Advertisement

Atomistic simulations to characterize the influence of applied strain and PKA energy on radiation damage evolution in pure aluminum

  • Qurat-ul-ain Sahi
  • Yong-Soo Kim
Regular Article
  • 66 Downloads

Abstract

Knowledge of defects generation, their mobility, growth rate, and spatial distribution is the cornerstone for understanding the surface and structural evolution of a material used under irradiation conditions. In this study, molecular dynamics simulations were used to investigate the coupled effect of primary knock-on atom (PKA) energy and applied strain (uniaxial and hydrostatic) fields on primary radiation damage evolution in pure aluminum. Cascade damage simulations were carried out for PKA energy ranging between 1 and 20 keV and for applied strain values ranging between −2% and 2% at the fixed temperature of 300 K. Simulation results showed that as the atomic displacement cascade proceeds under uniaxial and hydrostatic strains, the peak and surviving number of Frenkel point defects increases with increasing tension; however, these increments were more prominent under larger volume changing deformations (hydrostatic strain). The percentage fraction of point defects that aggregate into clusters increases under tension conditions; compared to the reference conditions with no strain, these increases are around 13% and 7% for interstitials and vacancies, respectively (under 2% uniaxial strain), and 19% and 11% for interstitials and vacancies, respectively (under 2% hydrostatic strain). Clusters formed of vacancies and interstitials were both larger under tensile strain conditions, with increases in both the average and maximum cluster sizes. The rate of increase/decrease in the number of Frenkel pairs, their clustering, and their size distributions under expansion/compression strain conditions were higher for higher PKA energies. Overall, the present results suggest that strain effects should be considered carefully in radiation damage environments, specifically for conditions of low temperature and high radiation energy. Compressive strain conditions could be beneficial for materials used in nuclear reactor power systems.

Keywords

Solid State and Materials 

References

  1. 1.
    S. Ohira, M. Iwaki, Mater. Sci. Eng. 90, 143 (1987) CrossRefGoogle Scholar
  2. 2.
    E. Verbiest, H. Pattyn, Phys. Rev. B 25, 5097 (1982) ADSCrossRefGoogle Scholar
  3. 3.
    R. Nabbi, J. Wolters, Investigation of radiation damage in the aluminum structures of the German FRJ-2 research reactor, in IGORR Conference Proceedings, Munich (2001) Google Scholar
  4. 4.
    A. Jostsons, E. Long Jr., Radiat. Eff. 16, 83 (1972) CrossRefGoogle Scholar
  5. 5.
    T. Frederiksen, M. Brandbyge, N. Lorente, A.-P. Jauho, Phys. Rev. Lett. 93, 256601 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    M. López-Suárez, I. Neri, R. Rurali, J. Appl. Phys. 119, 165105 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    R. Rurali, Rev. Mod. Phys. 82, 427 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    W. Sa-Ke, W. Jun, Chin. Phys. B 24, 037202 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    M. Sun, Q. Ren, S. Wang, J. Yu, W. Tang, J. Phys. D: Appl. Phys. 49, 445305 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    R. Bullough, B. Eyre, R. Perrin, Nucl. Appl. Technol. 9, 346 (1970) CrossRefGoogle Scholar
  11. 11.
    G.S. Was, Fundamentals of radiation materials science: metals and alloys (Springer, Berlin, Heidelberg, 2016) Google Scholar
  12. 12.
    S.G. Psakhie, K. Zolnikov, D. Kryzhevich, A. Zheleznyakov, V. Chernov, Crystallogr. Rep. 54, 1002 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    J. Brimhall, B. Mastel, J. Nucl. Mater. 29, 123 (1969) ADSCrossRefGoogle Scholar
  14. 14.
    A. Barragán-Vidal, R. García-García, H. Cruz-Manjarrez, M. Aguilar-Franco, J. Reyes-Gasga, Radiat. Eff. Defects Solids 164, 8 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    M. Butt, D. Ali, H. Farooq, F. Bashir, Physica B 456, 275 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    C. Wang, W. Zhang, C. Ren, P. Huai, Z. Zhu, Nucl. Instrum.Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 321, 49 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    A. Parashar, D. Singh, Comput. Mater. Sci. 131, 48 (2017) CrossRefGoogle Scholar
  18. 18.
    D. Bacon, A. Calder, F. Gao, Radiat. Eff. Defects Solids 141, 283 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    D.J. Bacon, Y.N. Osetsky, R. Stoller, R.E. Voskoboinikov, J. Nucl. Mater. 323, 152 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    W. Phythian, R. Stoller, A. Foreman, A. Calder, D. Bacon, J. Nucl. Mater. 223, 245 (1995) ADSCrossRefGoogle Scholar
  21. 21.
    D. Bacon, F. Gao, Y.N. Osetsky, J. Nucl. Mater. 276, 1 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    D. Bacon, A. Calder, F. Gao, J. Nucl. Mater. 251, 1 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    H. Zhu, R. Averback, M. Nastasi, Philos. Mag. A 71, 735 (1995) ADSCrossRefGoogle Scholar
  24. 24.
    A. Al Mazouzi, M.J. Caturla, T.D. de la Rubia, M. Victoria, in EPFL supercomputing review, No. 10 (Swiss Federal Institute of Technology, Zurich, 1998), p. 10 Google Scholar
  25. 25.
    J. Guénolé, A. Prakash, E. Bitzek, Mater. Des. 111, 405 (2016) CrossRefGoogle Scholar
  26. 26.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    G.P. Pun, Y. Mishin, Philos. Mag. 89, 3245 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    J.F. Ziegler, J. Biersack, U. Littmark, in The stopping and range of ions in matter (Pergamon Press, New York, 1985), Vol. 1, p. 1 Google Scholar
  29. 29.
    D. Bacon, A. Calder, F. Gao, V. Kapinos, S. Wooding, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 102, 37 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    ASTM (E521-96), Standard practice for neutron radiation damage simulation by charged-particle irradiation (American Society of Testing and Materials, Philadelphia, PA, 2009) Google Scholar
  31. 31.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    R.E. Voskoboinikov, Y.N. Osetsky, D.J. Bacon, J. Nucl. Mater. 377, 385 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    B. Li, L. Wang, W.-R. Jian, E. Jun-Cheng, H.-H. Ma, S.-N.Luo, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 368, 60 (2016) ADSCrossRefGoogle Scholar
  34. 34.
    D. Wang, N. Gao, Z. Wang, X. Gao, W. He, M. Cui, L. Pang, Y. Zhu, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 384, 68 (2016) ADSCrossRefGoogle Scholar
  35. 35.
    S. Miyashiro, S. Fujita, T. Okita, J. Nucl. Mater. 415, 1 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    F. Gao, D. Bacon, P. Flewitt, T. Lewis, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 180, 187 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    S. Miyashiro, S. Fujita, T. Okita, H. Okuda, Fusion Eng. Des. 87, 1352 (2012) CrossRefGoogle Scholar
  38. 38.
    R. Stoller, Nucl. Eng. Des. 195, 129 (2000) CrossRefGoogle Scholar
  39. 39.
    B. Beeler, M. Asta, P. Hosemann, N. Grønbech-Jensen, J. Nucl. Mater. 459, 159 (2015) ADSCrossRefGoogle Scholar
  40. 40.
    C. Gao, D. Tian, M. Li, D. Qian, J. Nucl. Mater. 487, 167 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringHanyang UniversitySeongdong-guRepublic of Korea

Personalised recommendations