Advertisement

The effect of heterogeneous defectors on the evolution of public cooperation

  • Tong Chen
  • Xuezhi Hu
  • Yongjie Wang
  • Le Wang
Regular Article
  • 61 Downloads

Abstract

In recent years,more and more private capital join the construction of cultural facilities and the organization of cultural activities in China. Actually, the organization of cultural activities by crowd-funding mechanism is a kind of multi-player game. Not all players who donate different amount of money are real cooperators. In fact, some cunning defectors may donate a little money to avoid the gossip and punishment. This part of people are very tricky. They could be seen as heterogeneous defectors. The role of heterogeneous defectors is investigated in cooperative behaviors of complex social network. Numerical results show that heterogeneous defectors could be a buffer for maintaining the public pool when synergy factor is low in public goods game (PGG). It is relatively easy to be cooperators for heterogeneous defectors when synergy factor is high in PGG. To better improve cooperation, punishment towards heterogeneous defectors and complete defectors is introduced. We are glad to find that when the defectors’ loss is equal to or larger than the altruistic cooperators’ punishment cost, the mechanism could make great effect. In addition, the role of heterogeneous defectors depends on the relationship between the punishment cost and the defectors’ loss.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A. Aleta, S. Meloni, M. Perc, Y. Moreno, Phys. Rev. E 94, 062315 (2016) ADSCrossRefGoogle Scholar
  2. 2.
    H. Cheng, et al. Eur. Phys. J. B 86, 127 (2013) ADSCrossRefGoogle Scholar
  3. 3.
    Z. Qin, Z. Hu, X. Zhou, J. Yi, Eur. Phys. J. B 88, 92 (2015) ADSCrossRefGoogle Scholar
  4. 4.
    D. Peng, H.X. Yang, W.X. Wang, G.R. Chen, B.H. Wang, Eur. Phys. J. B 73, 455 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    A. Traulsen, C. Hauert, S.H. De, M.A. Nowak, K. Sigmund, Proc. Natl. Acad. Sci. USA 106, 709 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    R. Axelrod, D. Dion, Science 242, 1385 (1988) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Li, J. Zhang, M. Perc, Appl. Math. Comput. 320, 437 (2018) MathSciNetGoogle Scholar
  8. 8.
    M.A. Javarone, Eur. Phys. J. B 89, 42 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    Z. Yang, T. Wu, Z. Li, L. Wang, Eur. Phys. J. B 86, 158 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    T. Chen, Z.H. Wu, L. Wang, Int. J. Mod. Phys. C 28, 1750149-1 (2018) ADSGoogle Scholar
  11. 11.
    G. Hardin, Science 162, 243 (1968) Google Scholar
  12. 12.
    M. Olson, Am. J. Sociol. 72, 159C192 (1966) Google Scholar
  13. 13.
    D.G, Hernández, D.H. Zanette, Eur. Phys. J. B 87, 19 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    L. Wang, T. Chen, X. You, Y. Wang, Physica A 493, 84 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    M. A. Javarone, Eur. Phys. J. B 90, 171 (2017) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Wedekind M. Milinski. Science 288, 850 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    M. Nowak, M. Nowak, Supercooperators (Canongate Books, Edinburgh, 2011) Google Scholar
  18. 18.
    G.S. Becker, J. Polit. Econ. 82, 1063 (1974) CrossRefGoogle Scholar
  19. 19.
    J. Wang, F. Fu, T. Wu, L. Wang, Phys. Rev. E 80, 016101 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    E. Fehr, A theory of fairness, competition, and cooperation, University of Munich, Department of Economics, 2001 Google Scholar
  21. 21.
    J. Zhang, C. Zhang, Eur. Phys. J. B 88, 136 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    A.M. Colman, Nature 440, 744 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    H. Gintis, S. Bowles, R. Boyd, E. Fehr, Evol. Hum. Behav. 24, 153 (2003) CrossRefGoogle Scholar
  24. 24.
    Y. Wang, T. Chen, Q. Chen, G. Si, Physica A 468, 475 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    R. Mark Isaac, K.F. Mccue, C.R. Plott, J. Public Econ. 26, 51 (1985) CrossRefGoogle Scholar
  26. 26.
    J.O. Ledyard, in Handbook of experimental economics results (Princeton University Press, Princeton, 1994), Vol. 1, pp. 111–251 Google Scholar
  27. 27.
    A. Szolnoki, G. Szabó, EPL 77, 30004 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    M. Perc, A. Szolnoki, Phys. Rev. E 77, 011904 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    A. Szolnoki, M. Perc, G. Szabó, Eur. Phys. J. B 61, 505 (2008) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Lin, D.-P. Yang, J.W. Shuai, Chaos Solitons Fractals 44, 153 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    A. Szolnoki, G. Szab, M. Perc, Phys. Rev. E 83, 036101 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    A. Szolnoki, G. Szab, L. Czak, Phys. Rev. E 84, 046106 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    A. Szolnoki, M. Perc. J. Theor. Biol. 325, 34 (2013) CrossRefGoogle Scholar
  34. 34.
    Z. Wang, C.-Y. Xia, S. Meloni, C.-S. Zhou, Y. Moreno, Sci. Rep. 3, 3055 (2013) CrossRefGoogle Scholar
  35. 35.
    C. Hauert, A. Traulsen, H. Brandt, M.A. Nowak, K. Sigmund, Science 316, 1905 (2007) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    L. Liu, X. Chen, A. Szolnoki, Sci. Rep. 7, 46634 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    A. Szolnoki, M. Perc. Phys. Rev. E 85, 026104 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    C. Wang, L. Wang, J. Wang, S. Sun, C. Xia, Appl. Math. Comput. 293, 18 (2017) MathSciNetGoogle Scholar
  39. 39.
    M.-H. Chen, L. Wang, S.-w. Sun, J. Wang, C.-Y. Xia, Phys. Lett. A 380, 40 (2016) ADSCrossRefGoogle Scholar
  40. 40.
    D. Kasthurirathna, M. Piraveenan, M. Harré, Eur. Phys. J. B 87, 3 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    Z.-H. Rong, Q. Zhao, Z.-X. Wu, T. Zhou, C.K. Tse, Eur. Phys. J. B 89, 166 (2016) ADSCrossRefGoogle Scholar
  42. 42.
    W. Zhang, C. Xu, P.M. Hui, Eur. Phys. J. B 86, 196 (2013) ADSCrossRefGoogle Scholar
  43. 43.
    C. Xu, W. Zhang, P. Du, C.W. Choi, P.M. Hui, Eur. Phys. J. B 89, 152 (2016) ADSCrossRefGoogle Scholar
  44. 44.
    A. Szolnoki, M. Perc, Phys. Rev. X 7, 041027 (2017) Google Scholar
  45. 45.
    E. Fehr, S. Gachter, Nature 415, 137 (1997) ADSCrossRefGoogle Scholar
  46. 46.
    E. Fehr, U. Fischbacher, IEW–Working Papers 25, 63 (2004) Google Scholar
  47. 47.
    T. Yamagishi, J. Personal. Soc. Psychol. 51, 110 (1986) CrossRefGoogle Scholar
  48. 48.
    S. Bowles, H. Gintis, Theor. Popul. Biol. 65, 17 (2004) CrossRefGoogle Scholar
  49. 49.
    U. Fischbacher, S. Gachter, S. Quercia, J. Econ. Psychol. 33, 897C913 (2012) CrossRefGoogle Scholar
  50. 50.
    Q. Chen, T. Chen, Y. Wang, Chaos Solitons Fractals 91, 649 (2016) ADSCrossRefGoogle Scholar
  51. 51.
    Y. Wang, T. Chen, Physica A 439, 59 (2015) ADSCrossRefGoogle Scholar
  52. 52.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  53. 53.
    M. Perc, A. Szolnoki, BioSystems 99, 109 (2010) CrossRefGoogle Scholar
  54. 54.
    G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007) ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    A. Li, T. Wu, R. Cong, L. Wang, EPL 103, 30007 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Management and Economics, Tianjin UniversityTianjinP.R. China
  2. 2.School of Economics and Management, Chang’an UniversityXi’anP.R. China

Personalised recommendations