Skip to main content
Log in

Simple analytical model of a thermal diode

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Recently there is a lot of attention given to manipulation of heat by constructing thermal devices such as thermal diodes, transistors and logic gates. Many of the models proposed have an asymmetry which leads to the desired effect. Presence of non-linear interactions among the particles is also essential. But, such models lack analytical understanding. Here we propose a simple, analytically solvable model of a thermal diode. Our model consists of classical spins in contact with multiple heat baths and constant external magnetic fields. Interestingly the magnetic field is the only parameter required to get the effect of heat rectification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hu, B. Li, H. Zhao, Phys. Rev. E 57, 2992 (1998)

    Article  ADS  Google Scholar 

  2. S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, Phys. Rev. Lett. 101, 075903 (2008)

    Article  ADS  Google Scholar 

  4. A. Dhar, Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  5. K. Saito, A. Dhar, Phys. Rev. Lett. 104, 040601 (2010)

    Article  ADS  Google Scholar 

  6. N. Yang, G. Zhang, B. Li, Nano Today 5, 85 (2010)

    Article  Google Scholar 

  7. B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  8. B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  9. O.P. Saira, M. Meschke, F. Giazotto, A.M. Savin, M. Möttönen, J.P. Pekola, Phys. Rev. Lett. 99, 027203 (2007)

    Article  ADS  Google Scholar 

  10. L. Wang, B. Li, Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  11. W. Lo, L. Wang, B. Li, J. Phys. Soc. Jpn. 77, 054402 (2008)

    Article  ADS  Google Scholar 

  12. R. Marathe, A.M. Jayannavar, A. Dhar, Phys. Rev. E 75, 030103(R) (2007)

    Article  ADS  Google Scholar 

  13. B. Liang, B. Yuan, J.-C. Cheng, Phys. Rev. Lett. 103, 104301 (2009)

    Article  ADS  Google Scholar 

  14. X.F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, Y.-F. Chen, Phys. Rev. Lett. 106, 084301 (2011)

    Article  ADS  Google Scholar 

  15. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

    Article  ADS  Google Scholar 

  16. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  17. C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006)

    Article  ADS  Google Scholar 

  18. G. Wu, B. Li, Phys. Rev. B 76, 085424 (2007)

    Article  ADS  Google Scholar 

  19. G. Wu, B. Li, J. Phys. Condens. Matter 20, 175211 (2008)

    Article  ADS  Google Scholar 

  20. N. Yang, G. Zhang, B. Li, Appl. Phys. Lett. 93, 243111 (2008)

    Article  ADS  Google Scholar 

  21. N. Yang, G. Zhang, B. Li, Appl. Phys. Lett. 95, 033107 (2009)

    Article  ADS  Google Scholar 

  22. J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009)

    Article  ADS  Google Scholar 

  23. E. Gonzalez Noya, D. Srivastava, M. Menon, Phys. Rev. B 79, 115432 (2009)

    Article  ADS  Google Scholar 

  24. J. Jiang, J. Wang, B. Li, Eur. Phys. Lett. 89, 46005 (2010)

    Article  ADS  Google Scholar 

  25. H. Wang, S. Hu, K. Takahashi, X. Zhang, H. Takamatsu, J. Chen, Nat. Commun. 8, 15843 (2017)

    Article  ADS  Google Scholar 

  26. L. Wang, B. Li, Phys. Rev. E 83, 061128 (2011)

    Article  ADS  Google Scholar 

  27. D. Bagchi, J. Phys. Condens. Matter 25, 496006 (2013)

    Article  Google Scholar 

  28. D. Bagchi, J. Stat. Mech. Theory Exp. 2015, P02015 (2015)

    Article  Google Scholar 

  29. E. Pereira, Phys. Rev. E 82, 040101(R) (2010)

    Article  ADS  Google Scholar 

  30. E. Pereira, Phys. Rev. E 83, 031106 (2011)

    Article  ADS  Google Scholar 

  31. E. Pereira, Phys. Rev. E 96, 012114 (2017)

    Article  ADS  Google Scholar 

  32. E. Pereira, Phys. Lett. A 374, 1933 (2010)

    Article  ADS  Google Scholar 

  33. N.G. van Kampen, Stochastic processes in physics and chemistry (North Holland, Amsterdam, 2007)

  34. S. Chen, D. Donadio, G. Benenti, G. Casati, arXiv:1712.03373 (2018)

  35. L. Sha, B.K. Agarwalla, B. Li, J.-S. Wang, Phys. Rev. E 87, 022122 (2013)

    Article  ADS  Google Scholar 

  36. Y. Yan, C.-Q. Wu, B. Li, Phys. Rev. B 79, 014207 (2009)

    Article  ADS  Google Scholar 

  37. E. Pereira, R.R. Avila, Phys. Rev. E 88, 032139 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Marathe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, S., Kaushik, S. & Marathe, R. Simple analytical model of a thermal diode. Eur. Phys. J. B 91, 87 (2018). https://doi.org/10.1140/epjb/e2018-90038-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90038-4

Keywords

Navigation