Theoretical prediction of honeycomb carbon as Li-ion batteries anode material

Regular Article
  • 27 Downloads

Abstract

First principles calculations are performed to study the electronic properties and Li storage capability of honeycomb carbon. We find its right model consistent with the experimental result, the honeycomb carbon and its Li-intercalated configurations are all metallic which is beneficial to the electrode materials for lithium-ion batteries. The model 1 configuration shows fast Li diffusion and theoretical Li storage capacity of 319 mAh/g. Moreover, the average intercalation potentials for honeycomb carbon material is calculated to be low relatively. Our results suggest that the honeycomb carbon would be a new promising pure carbon anode material for Li-ion batteries.

Keywords

Solid State and Materials 

References

  1. 1.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4, 3243 (2011) CrossRefGoogle Scholar
  2. 2.
    C. De las Casas, W. Li, J. Power Sources 208, 74 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    M. Yoshio, H. Wang, K. Fukuda, Angew. Chem. 115, 4335 (2003) CrossRefGoogle Scholar
  4. 4.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Nano Lett. 9, 3844 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    M. Thackeray, C. Wolverton, E. Isaacs, Energy Environ. Sci. 5, 7854 (2012) CrossRefGoogle Scholar
  7. 7.
    B. Veeraraghavan, J. Paul, B. Haran, B. Popov, J. Power Sources 109, 377 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    S. Chae, N. Kim, J. Ma, J. Cho, M. Ko, Adv. Energy Mater. 7, 1700071 (2017) CrossRefGoogle Scholar
  9. 9.
    M. Yoshio, H. Wang, K. Fukuda, Y. Hara, Y. Adachi, J. Electrochem. Soc. 147, 1245 (2000) CrossRefGoogle Scholar
  10. 10.
    Y.P. Wu, E. Rahm, R. Holze, J. Power Sources 114, 228 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    E. Peled, C. Menachem, D. Bar-Tow, A. Melman, J. Electrochem. Soc. 143, L4 (1996) CrossRefGoogle Scholar
  12. 12.
    L. Zou, F. Kang, X. Li, Y.P. Zheng, W. Shen, J.J. Zhang, Phys. Chem. Solids 69, 1265 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, X. Huang, Nat. Commun. 4, 1870 (2013) CrossRefGoogle Scholar
  14. 14.
    J. Liu, K. Song, P.A.V. Aken, J. Maier, Y. Yu, Nano Lett. 14, 2597 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    L. Zhao, Y.S. Hu, H. Li, Z. Wang, L. Chen, Adv. Mater. 23, 1385 (2011) CrossRefGoogle Scholar
  16. 16.
    L.F. Cui, Y. Yang, C.M. Hsu, Y. Cui, Nano Lett. 9, 3370 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, Y. Cui, Nano Lett. 11, 2949 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    C.K. Chan, X.F. Zhang, Y. Cui, Nano Lett. 8, 307 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    W.M. Zhang, J.S. Hu, Y.G. Guo, S.F. Zheng, L.S. Zhong, W.G. Song, L.J. Wan, Adv. Mater. 20, 1160 (2008) CrossRefGoogle Scholar
  21. 21.
    Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276, 1395 (1997) CrossRefGoogle Scholar
  22. 22.
    J. Hassoun, S. Panero, P. Simon, P.L. Taberna, B. Scrosati, Adv. Mater. 19, 1632 (2007) CrossRefGoogle Scholar
  23. 23.
    Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R. Kent, ACS Nano 8, 9606 (2014) CrossRefGoogle Scholar
  24. 24.
    D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, ACS Appl. Mater. Interfaces 6, 11173 (2014) CrossRefGoogle Scholar
  25. 25.
    Q. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc. 134, 16909 (2012) CrossRefGoogle Scholar
  26. 26.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  27. 27.
    A.K. Geim, Science 324, 1530 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 8, 2277 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    G.X. Wang, X.P. Shen, J. Yao, J. Park, Carbon 47, 2049 (2009) CrossRefGoogle Scholar
  30. 30.
    N. Kheirabadi, A. Shafiekhani, J. Appl. Phys. 112, 124323 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    M. Liang, L.J. Zhi, Mater. Chem. 19, 5871 (2009) CrossRefGoogle Scholar
  32. 32.
    D.Y. Pan, S. Wang, B. Zhao, M.H. Wu, H.J. Zhang, Y. Wang, Z. Jiao, Chem. Mater. 21, 3136 (2009) CrossRefGoogle Scholar
  33. 33.
    P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, Electrochim. Acta 55, 3909 (2010) CrossRefGoogle Scholar
  34. 34.
    A. Baimova, E.A. Korznikova, S.V. Dmitriev, B. Liu, K. Zhou, Rev. Adv. Mater. Sci. 39, 68 (2014) Google Scholar
  35. 35.
    H. Wang, X. Yuan, G. Zeng, Y. Wu, Y. Liu, Q. Jiang, S. Gu, Adv. Colloid Interface 221, 41 (2015) CrossRefGoogle Scholar
  36. 36.
    X.H. Xia, D.L. Chao, Y.Q. Zhang, Z.X. Shen, H.J. Fan, Nano Today 9, 785 (2014) CrossRefGoogle Scholar
  37. 37.
    J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, H.J. Fan, Nano Lett. 13, 6136 (2013) ADSCrossRefGoogle Scholar
  38. 38.
    C. Wu, P. Kopold, Y.L. Ding, P.A. van Aken, J. Maier, Y. Yu, ACS Nano 9, 6610 (2015) CrossRefGoogle Scholar
  39. 39.
    J. Zhou, Y. Huang, X. Cao, B. Ouyang, W. Sun, C. Tan, H. Zhang, Nanoscale 7, 7035 (2015) ADSCrossRefGoogle Scholar
  40. 40.
    X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong, H. Zhang, Small 9, 3433 (2013) CrossRefGoogle Scholar
  41. 41.
    Y. Chen, S. Lu, J. Zhou, X. Wu, W. Qin, O. Ogoke, G. Wu, J. Mater. Chem. A 5, 102 (2017) CrossRefGoogle Scholar
  42. 42.
    W. Wei, S. Yang, H. Zhou, I. Lieberwirth, X. Feng, K. Müllen, Adv. Mater. 25, 2909 (2013) CrossRefGoogle Scholar
  43. 43.
    B. Luo, L.J. Zhi, Energy Environ. Sci. 8, 456 (2015) CrossRefGoogle Scholar
  44. 44.
    S. Mao, G. Lu, J. Chen, Nanoscale 7, 6924 (2015) ADSCrossRefGoogle Scholar
  45. 45.
    N.V. Krainyukova, Low Temp. Phys. 35, 294 (2009) ADSCrossRefGoogle Scholar
  46. 46.
    N.V. Krainyukova, E.N. Zubarev, Phys. Rev. Lett. 116, 055501 (2016) ADSCrossRefGoogle Scholar
  47. 47.
    N.V. Krainyukova, E.N. Zubarev, Phys. Rev. Lett. 118, 029901 (2017) ADSCrossRefGoogle Scholar
  48. 48.
    J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C: Solid State Phys. 12, 4409 (1979) ADSCrossRefGoogle Scholar
  49. 49.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  50. 50.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  51. 51.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  52. 52.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    O. Leenaerts, H. Peelaers, A.D. Hernández-Nieves, B. Partoens, F.M. Peeters, Phys. Rev. B 82, 195436 (2010) ADSCrossRefGoogle Scholar
  54. 54.
    T. Kawai, S. Okada, Y. Miyamoto, A. Oshiyama, Phys. Rev. B 72, 035428 (2005) ADSCrossRefGoogle Scholar
  55. 55.
    G. Henkelman, B.P. Uberuaga, H. Joĺnsson, J. Chem. Phys. 113, 9901 (2000) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Science, Nanchang Institute of TechnologyNanchangP.R. China

Personalised recommendations