Advertisement

Time-dependent transport through a T-coupled quantum dot

  • Georgios E. Pavlou
  • Nikolaos E. Palaiodimopoulos
  • Panayiotis A. Kalozoumis
  • Anastasios Sourpis
  • Fotios K. Diakonos
  • Alexandros I. Karanikas
Regular Article
  • 15 Downloads

Abstract

We are considering the time-dependent transport through a discrete system, consisting of a quantum dot T-coupled to an infinite tight-binding chain. The periodic driving that is induced on the coupling between the dot and the chain, leads to the emergence of a characteristic multiple Fano resonant profile in the transmission spectrum. We focus on investigating the underlying physical mechanisms that give rise to the quantum resonances. To this end, we use Floquet theory for calculating the transmission spectrum and in addition employ the Geometric phase propagator approach [G. Pavlou, A. Karanikas, F. Diakonos, Ann. Phys. 375, 351 (2016)] to calculate the transition amplitudes of the time-resolved virtual processes, in terms of which we describe the resonant behavior. This two fold approach, allows us to give a rigorous definition of a quantum resonance in the context of driven systems and explains the emergence of the characteristic Fano profile in the transmission spectrum.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    Y. Masumoto, T. Takagahara, Semiconductor quantum dots: physics, spectroscopy and applications (Springer Science & Business Media, Berlin, Heidelberg, 2013) Google Scholar
  2. 2.
    B.A. Kairdolf, A.M. Smith, T.H. Stokes, M.D. Wang, A.N. Young, S. Nie, Annu. Rev. Anal. Chem. 6, 143 (2013) CrossRefGoogle Scholar
  3. 3.
    V. Wood, V. Bulovic, in Colloidal Quantum Dot Optoelectronics and Photovoltaics (Cambridge University Press, Cambridge, 2013), p. 148 Google Scholar
  4. 4.
    D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    J. Song, Y. Ochiai, J. Bird, Appl. Phys. Lett. 82, 4561 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    U. Fano, Phys. Rev. 124, 1866 (1961) ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    A. Clerk, X. Waintal, P. Brouwer, Phys. Rev. Lett. 86, 4636 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    G.H. Ding, C.K. Kim, K. Nahm, Phys. Rev. B 71, 205313 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Phys. Rev. Lett. 88, 256806 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, Y. Iye, Phys. Rev. B 70, 035319 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    T. Papadopoulos, I. Grace, C. Lambert, Phys. Rev. B 74, 193306 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    D. Nozaki, H. Sevinçli, S.M. Avdoshenko, R. Gutierrez, G. Cuniberti, Phys. Chem. Chem. Phys. 15, 13951 (2013) CrossRefGoogle Scholar
  15. 15.
    A. Kormanyos, I. Grace, C. Lambert, Phys. Rev. B 79, 075119 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    D. Tannor, Introduction to quantum mechanics: A time-dependent perspective (University Science Books, USA, 2007) Google Scholar
  18. 18.
    T. Dittrich, P. Hänggi, G.L. Ingold, B. Kramer, G. Schön, W. Zwerger, in Quantum transport and dissipation (Wiley-Vch Weinheim, Weinheim, 1998), Vol. 3 Google Scholar
  19. 19.
    S.I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Martinez, L. Reichl, Phys. Rev. B 64, 245315 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    W. Li, L. Reichl, Phys. Rev. B 60, 15732 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Vardi, E. Cohen-Hoshen, G. Shalem, I. Bar-Joseph, Nano Lett. 16, 748 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    D. Thuberg, S.A. Reyes, S. Eggert, Phys. Rev. B 93, 180301 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    Y. Ma, Y. Liu, R. Niu, Y. Huang, in Material Scienceand Engineering: Proceedings of the 3rd Annual 2015 International Conference on Material Science and Engineering (ICMSE2015, Guangzhou, Guangdong, China, 15–17 May 2015) (CRC Press, 2016), p. 251 Google Scholar
  25. 25.
    A. Emmanouilidou, L. Reichl, Phys. Rev. A 65, 033405 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    F.K. Diakonos, P.A. Kalozoumis, A.I. Karanikas, N. Manifavas, P. Schmelcher, Phys. Rev. A 85, 062110 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    M.V. Berry, Proc. R. Soc. Lond. A 414, 31 (1987) ADSCrossRefGoogle Scholar
  28. 28.
    F. Wilczek, A. Shapere, in Geometric phases in physics, (World Scientific, Singapore, 1989), Vol. 5 Google Scholar
  29. 29.
    N. Hatano, Fortschr. Phys. 61, 238 (2013) MathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, 1997) Google Scholar
  31. 31.
    D.A. Ryndyk et al., Theory of Quantum Transport at Nanoscale (Springer, Switzerland, 2016) Google Scholar
  32. 32.
    K. Sasada, N. Hatano, G. Ordonez, J. Phys. Soc. Jpn. 80, 104707 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    N. Hatano, K. Sasada, H. Nakamura, T. Petrosky, Progr. Theor. Phys 119, 187 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    M. Büttiker, R. Landauer, Phys. Rev. Lett. 49, 1739 (1982) ADSCrossRefGoogle Scholar
  35. 35.
    T. Bilitewski, N.R. Cooper, Phys. Rev. A 91, 033601 (2015) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    G. Pavlou, A. Karanikas, F. Diakonos, Annu. Phys. 375, 351 (2016). ADSCrossRefGoogle Scholar
  37. 37.
    S. Gasiorowicz, Quantum physics (John Wiley & Sons, Hoboken, NJ, 2007) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsNational and Kapodistrian University of AthensAthensGreece
  2. 2.LUNAM Université, Université du Maine, CNRSLe MansFrance

Personalised recommendations