Advertisement

Theoretical investigation of the structures of unsupported 38-atom CuPt clusters

  • Josafat Guerrero-Jordan
  • José Luis Cabellos
  • Roy L. Johnston
  • Alvaro Posada-AmarillasEmail author
Regular Article
  • 82 Downloads
Part of the following topical collections:
  1. Topical issue: Shaping Nanocatalysts

Abstract

A genetic algorithm has been used to perform a global sampling of the potential energy surface in the search for the lowest-energy structures of unsupported 38-atom Cu–Pt clusters. Structural details of bimetallic Cu–Pt nanoparticles are analyzed as a function of their chemical composition and the parameters of the Gupta potential, which is used to mimic the interatomic interactions. The symmetrical weighting of all parameters used in this work strongly influences the chemical ordering patterns and, consequently, cluster morphologies. The most stable structures are those corresponding to potentials weighted toward Pt characteristics, leading to Cu–Pt mixing for a weighting factor of 0.7. This reproduces density functional theory (DFT) results for Cu–Pt clusters of this size. For several weighting factor values, the Cu30Pt8 cluster exhibits slightly higher relative stability. The copper-rich Cu32Pt6 cluster was reoptimized at the DFT level to validate the reliability of the empirical approach, which predicts a Pt@Cu core-shell segregated cluster. A general increase of interatomic distances is observed in the DFT calculations, which is greater in the Pt core. After cluster relaxation, structural changes are identified through the pair distribution function. For the majority of weighting factors and compositions, the truncated octahedron geometry is energetically preferred at the Gupta potential level of theory.

References

  1. 1.
    R.L. Johnston, Atomic and molecular clusters (Taylor and Francis, London and New York, 2002) Google Scholar
  2. 2.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    R. Ferrando, R.L. Johnston, J. Jellinek, Chem. Rev. 108, 845 (2008) CrossRefGoogle Scholar
  4. 4.
    P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Nano Today 2, 18 (2007) CrossRefGoogle Scholar
  5. 5.
    J. Jellinek, Theory of atomic and molecular clusters (Springer, Berlin, 1999) Google Scholar
  6. 6.
    S. Zhou, B. Varughese, B. Eichhorn, G. Jackson, K. McIlwrath, Angew. Chem. Int. Ed. 44, 4539 (2005) CrossRefGoogle Scholar
  7. 7.
    M. Watanabe, J.S. Motoo, J. Electroanal. Chem. 60, 267 (1975) CrossRefGoogle Scholar
  8. 8.
    T.A. Yamamoto, T. Nakagawa, S. Seino, H. Nitani, Appl. Catal. A 387, 195 (2010) CrossRefGoogle Scholar
  9. 9.
    J.H. Sinfelt, G.D. Meitzner, Acc. Chem. Res. 26, 1 (1993) CrossRefGoogle Scholar
  10. 10.
    B. Roldan-Cuenya, Thin Solid Films 518, 3127 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    I. Czekaj, J. Wambach, O. Kröcher, Int. J. Mol. Sci. 10, 4310 (2009) CrossRefGoogle Scholar
  12. 12.
    J.K. Nørskov, T. Bligaard, T.J. Rossmeisl, C.H. Christensen, Nat. Chem. 1, 37 (2009) CrossRefGoogle Scholar
  13. 13.
    J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proc. Natl. Acad. Sci. USA 108, 937 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    Q. Liu, Z. Yan, N.L. Henderson, J.C. Bauer, D.W. Goodman, J.D. Batteas, R.E. Schaak, J. Am. Chem. Soc. 131, 5720 (2009) CrossRefGoogle Scholar
  15. 15.
    M. Neergat, R. Rahul, J. Electrochem. Soc. 159, F234 (2012) CrossRefGoogle Scholar
  16. 16.
    W. Weihua, T. Xuelin, C. Kai, C. Gengyu, Colloids Surf. A 273, 35 (2006) CrossRefGoogle Scholar
  17. 17.
    X. Zheng, S. Liu, X. Chen, J. Cheng, C. Si, Z. Pan, A. Marcelli, W. Chu, Z. Wu, J. Phys. Conf. Ser. 430, 012037 (2013) CrossRefGoogle Scholar
  18. 18.
    D.J. Borbón-González, R. Pacheco-Contreras, A. Posada-Amarillas, J.C. Schön, R.L. Johnston, J.M. Montejano-Carrizales, J. Phys. Chem. C 113, 15904 (2009) CrossRefGoogle Scholar
  19. 19.
    K. Yun, Y. Cho, P. Cha, J. Lee, H. Nam, J.S. Oh, J. Choi, S. Lee, Acta Mater. 60, 4908 (2012) CrossRefGoogle Scholar
  20. 20.
    A. Bruma, R. Ismail, L.O. Paz-Borbón, H. Arslan, G. Barcaro, A. Fortunelli, Z.Y. Li, R.L. Johnston, Nanoscale 5, 646 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    S. Dennler, J. Morillo, G.M. Pastor, J. Phys.: Condens. Matter 16, S2263 (2004) ADSGoogle Scholar
  22. 22.
    E. Apra, A. Fortunelli, J. Phys. Chem. A 107, 2934 (2003) CrossRefGoogle Scholar
  23. 23.
    O. Lopez-Acevedo, J. Akola, R.L. Whetten, H. Grönbeck, H. Häkkinen, J. Phys. Chem. C 113, 5035 (2009) CrossRefGoogle Scholar
  24. 24.
    P.S. West, R.L. Johnston, G. Barcaro, A. Fortunelli, J. Phys. Chem. C 114, 19678 (2010) CrossRefGoogle Scholar
  25. 25.
    L.O. Paz-Borbón, G. Barcaro, A. Fortunelli, S.V. Levchenko, Phys. Rev. B 85, 155409 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    R.L. Johnston, Dalton Trans. 32, 4193 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993) ADSCrossRefGoogle Scholar
  28. 28.
    J. Delhommelle, P. Millié, Mol. Phys. 99, 619 (2001) ADSCrossRefGoogle Scholar
  29. 29.
    L.O. Paz-Borbón, A. Gupta, R.L. Johnston, J. Mater. Chem. 18, 4154 (2008) CrossRefGoogle Scholar
  30. 30.
    C. Massen, T.V. Mortimer-Jones, R.L. Johnston, J. Chem. Soc. Dalton Trans. 23, 4375 (2002) CrossRefGoogle Scholar
  31. 31.
    L.O. Paz-Borbón, R.L. Johnston, G. Barcaro, A. Fortunelli, J. Phys. Chem. C 111, 2936 (2007) CrossRefGoogle Scholar
  32. 32.
    F. Pittaway, L.O. Paz-Borbón, R.L. Johnston, H. Arslan, R. Ferrando, C. Mottet, G. Barcaro, A. Fortunelli, J. Phys. Chem. C 113, 9141 (2009) CrossRefGoogle Scholar
  33. 33.
    R. Pacheco-Contreras, J.O. Juárez-Sánchez, M. Dessens-Félix, F. Aguilera-Granja, A. Fortunelli, A. Posada-Amarillas, Comput. Mater. Sci. 141, 30 (2018) CrossRefGoogle Scholar
  34. 34.
    P. Mani, R. Srivastava, P. Strasser, J. Phys. Chem. C 112, 2770 (2008) CrossRefGoogle Scholar
  35. 35.
    R.P. Gupta, Phys. Rev. B 23, 6265 (1981) ADSCrossRefGoogle Scholar
  36. 36.
    R. Ismail, R.L. Johnston, Phys. Chem. Chem. Phys. 12, 8607 (2010) CrossRefGoogle Scholar
  37. 37.
    M. Cerbelaud, R. Ferrando, G. Barcaro, A. Fortunelli, Phys. Chem. Chem. Phys. 13, 10232 (2011) CrossRefGoogle Scholar
  38. 38.
    L. Peng, E. Ringe, R.P. Van Duyne, L.D. Marks, Phys. Chem. Chem. Phys. 17, 27940 (2015) CrossRefGoogle Scholar
  39. 39.
    J. Tang, L. Deng, S. Xiao, H. Deng, X. Zhang, W. Hu, J. Phys. Chem. C 119, 21515 (2015) CrossRefGoogle Scholar
  40. 40.
    L.O. Paz-Borbón, T.V. Mortimer-Jones, R.L. Johnston, A. Posada-Amarillas, G. Barcaro, A. Fortunelli, Phys. Chem. Chem. Phys. 9, 5202 (2007) CrossRefGoogle Scholar
  41. 41.
    C. Roberts, R.L. Johnston, N.T. Wilson, Theor. Chem. Acc. 104, 123 (2000) CrossRefGoogle Scholar
  42. 42.
    A. Shayeghi, D. Götz, J.B.A. Davis, R. Schäfer, R.L. Johnston, Phys. Chem. Chem. Phys. 17, 2104 (2014) CrossRefGoogle Scholar
  43. 43.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) ADSCrossRefGoogle Scholar
  44. 44.
    K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 97, 119 (1997) CrossRefGoogle Scholar
  45. 45.
    M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, Comput. Phys. Commun. 181, 1477 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    A.S. Chaves, G.G. Rondina, M.J. Piotrowsky, J.L.F. Da Silva, Comput. Mater. Sci. 98, 278 (2015) CrossRefGoogle Scholar
  47. 47.
    S. Núñez, R.L. Johnston, J. Phys. Chem. C 114, 13255 (2010) CrossRefGoogle Scholar
  48. 48.
    X. Zhao, B. Luo, R. Long, C. Wang, Y. Xiong, J. Mater. Chem. A 3, 4134 (2015) CrossRefGoogle Scholar
  49. 49.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010) ADSCrossRefGoogle Scholar
  50. 50.
    D.A. McQuarrie, Statistical mechanics (Harper and Row, New York, 1976) Google Scholar
  51. 51.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993) ADSCrossRefGoogle Scholar
  52. 52.
    X. Wu, J. Clust. Sci. 25, 1615 (2014) CrossRefGoogle Scholar
  53. 53.
    S. Lee, S. Jeong, W.D. Kim, S. Lee, K. Lee, W.K. Bae, J.H. Moon, S. Lee, D.C. Lee, Nanoscale 8, 10043 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Maestría en Ciencias (Física), División de Ciencias Exactas y Naturales, Universidad de SonoraHermosilloMexico
  2. 2.Departamento de Investigación en Polímeros y Materiales, Universidad de SonoraHermosilloMexico
  3. 3.School of Chemistry, University of BirminghamEdgbastonBirminghamUK
  4. 4.Departamento de Investigación en Física, Universidad de SonoraHermosilloMexico

Personalised recommendations