Advertisement

Dependence of chaotic actuation dynamics of Casimir oscillators on optical properties and electrostatic effects

  • Fatemeh Tajik
  • Mehdi Sedighi
  • Amir Ali Masoudi
  • Holger Waalkens
  • George Palasantzas
Open Access
Regular Article
  • 151 Downloads

Abstract

With Casimir and electrostatic forces playing a crucial role for the performance and stability of microelectromechanical systems (MEMS), the presence of chaotic behavior, which is often unavoidable, leads to device malfunction due to stiction. Therefore, we investigate here how the optical properties of different materials influence the chaotic behavior of electrostatic torsional MEMS due to changes in magnitude of the Casimir forces and torques. We consider the materials Au, which is a good conductor, AIST, which is a phase change material being close to metal in the crystalline state, and finally doped SiC as a very poor conductor. For the conservative systems, there is no chaotic behavior and the analysis of phase portraits and bifurcation diagrams reveal the strong sensitivity of stable actuation dynamics on the material optical properties, while applied electrostatic potentials lead faster to instability and stiction for higher conductivity materials. For the driven systems, the Melnikov method is used to study the chaotic behavior. The results from this method are supported by the study of the contours of the transient time to stiction in the phase plane, which reveal a substantially increased chaotic behavior for higher conductivity materials, associated with stronger Casimir torques and applied electrostatic potentials.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    J. Israelachvili, Intermolecular and surface forces (Academic, New York, 1992) Google Scholar
  2. 2.
    A.W. Rodriguez, F. Capasso, S.G. Johnson, Nat. Photonics 5, 211 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    F. Capasso, J.N. Munday, D. Iannuzzi, H.B. Chan, IEEE J. Sel. Top. Quant. Electron. 13, 400 (2007) CrossRefGoogle Scholar
  4. 4.
    M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir effect (Oxford University Press, New York, 2009) Google Scholar
  5. 5.
    S.R. Decca, D. López, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, V.M. Mostepanenko, Ann. Phys. 318, 37 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    S.R. Decca, D. López, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, V.M. Mostepanenko, Phys. Rev. D 75, 077101 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    A. Ashourvan, M.F. Miri, R. Golestanian, Phys. Rev. Lett. 98, 140801 (2014) CrossRefGoogle Scholar
  8. 8.
    M.F. Miri, R. Golestanian, Appl. Phys. Lett. 92, 113103 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    A. Ashourvan, M.F. Miri, R. Golestanian, Phys. Rev. E. 75, 040103 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    P. Ball, Nature 447, 77 (2007) CrossRefGoogle Scholar
  11. 11.
    G. Palasantzas, J.Th.M. DeHosson, Phys. Rev. B. 72, 121409 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    G. Palasantzas, J.Th.M. DeHosson, Phys. Rev. B. 72, 115426 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    F. Tajik, M. Sedighi, M. Khorrami, A.A. Masoudi, G. Palasantzas, Phys. Rev. E 96, 042215 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    F. Tajik, M. Sedighi, G. Palasantzas, J. Appl. Phys. 121, 174302 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948) Google Scholar
  16. 16.
    E.M. Lifshitz, Sov. Phys. JETP 2, 73 (1956) Google Scholar
  17. 17.
    I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Sov. Phys. Usp. 4, 153 (1961) ADSCrossRefGoogle Scholar
  18. 18.
    O. Bochobza-Degani, Y. Nemirovsky, Sens. Actuators A 97–98, 569 (2002) CrossRefGoogle Scholar
  19. 19.
    Y. Nemirovsky, O. Degani, J. Microelectromech. Syst. 10, 601 (2001) CrossRefGoogle Scholar
  20. 20.
    O. Degani, Y. Nemirovsky, J. Microelectromech. Syst. 11, 20 (2002) CrossRefGoogle Scholar
  21. 21.
    J.G. Guo, Y.P. Zhao, Int. J. Solids Struct. 43, 675 (2006) CrossRefGoogle Scholar
  22. 22.
    W.H. Lin, Y.P. Zhao, J. Phys. D: Appl. Phys. 40, 1649 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    R. Satter, F. Plötz, G. Fattinger, G. Wachutka, Sens. Actuators A 97–98, 337 (2002) CrossRefGoogle Scholar
  24. 24.
    W.H. Lin, Y.P. Zhao, Chaos Solitons Fractals 23, 1777 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    R. Maboudian, R.T. Howe, J. Vac. Sci. Technol. B 15, 1 (1997) CrossRefGoogle Scholar
  26. 26.
    G. Palasantzas, V.B. Svetovoy, P.J. van Zwol, Int. J. Mod. Phys. B 24, 6013 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    F. Chen, G.L. Klimchitskaya, V.M. Mostepanenko, U.M. Mohideen, Opt. Express 15, 4823 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    C.C. Chang, A.A. Banishev, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Phys. Rev. Lett. 107, 090403 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    G. Torricelli, P.J. van Zwol, O. Shpak, G. Palasantzas, V.B. Svetovoy, C. Binns, B.J. Kooi, P. Jost, M. Wuttig, Adv. Funct. Mater. 22, 3729 (2012) CrossRefGoogle Scholar
  30. 30.
    V.B. Svetovoy, P.J. van Zwol, G. Palasantzas, J.Th.M. DeHosson, Phys. Rev. B. 77, 035439 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997) ADSCrossRefGoogle Scholar
  32. 32.
    S.K. Lamoreaux, Rep. Progr. Phys. 68, 201 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop, F. Capasso, Phys. Rev. Lett. 87, 211801 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    M. Sedighi, V.B. Svetovoy, W.H. Broer, G. Palasantzas, Phys. Rev. B 89, 195440 (2014) ADSCrossRefGoogle Scholar
  35. 35.
    M. Sedighi, V.B. Svetovoy, G. Palasantzas, Phys. Rev. B 93, 085434 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    M. Wutting, N.Y. Yamada, Nat. Mater. 6, 824 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    W. Broer, G. Palasantzas, J. Knoester, V.B. Svetovoy, Phys. Rev. B 87, 125413 (2013) ADSCrossRefGoogle Scholar
  38. 38.
    W. Broer, H. Waalkens, V.B. Svetovoy, J. Knoester, G. Palasantzas, Phys. Rev. Appl. 4, 054016 (2015) ADSCrossRefGoogle Scholar
  39. 39.
    V.B. Svetovoy, G. Palasantzas, Adv. Colloid Interface Sci. 216, 1 (2015) CrossRefGoogle Scholar
  40. 40.
    F. Intravaia, A. Koev, I.W. Jun, A.A. Talin, P.S. Davids, R.S. Decca, V.A. Aksyuk, D.A.R. Dalvit, D. Lopez, Nat. Commun. 4, 2515 (2013) ADSCrossRefGoogle Scholar
  41. 41.
    R.S. Decca, D. Lopez, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, V.M. Mostepanenko, Ann. Phys. 318, 37 (2005) ADSCrossRefGoogle Scholar
  42. 42.
    S.R. Decca, D. López, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, V.M. Mostepanenko, Phys. Rev. D 75, 077101 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    O. Degani, E. Socher, A. Lipson, T. Lejtner, D.J. Setter, Sh. Kaldor, Y. Nemirovsky, J. Microelectromech. Syst. 7, 373 (1998) CrossRefGoogle Scholar
  44. 44.
    M. Sedighi, W.H. Broer, G. Palasantzas, B.J. Kooi, Phys. Rev. B 88, 165423 (2013) ADSCrossRefGoogle Scholar
  45. 45.
    S. Cui, Y.C. Soh, J. Microelectromech. Syst. 19, 1153 (2010) CrossRefGoogle Scholar
  46. 46.
    J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Springer, Berlin, Heidelberg, New York, 1983) Google Scholar

Copyright information

© The Author(s) 2018

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Fatemeh Tajik
    • 1
    • 2
  • Mehdi Sedighi
    • 2
  • Amir Ali Masoudi
    • 1
  • Holger Waalkens
    • 3
  • George Palasantzas
    • 2
  1. 1.Department of PhysicsAlzahra UniversityTehranIran
  2. 2.Zernike Institute for Advanced Materials, University of GroningenGroningenThe Netherlands
  3. 3.Johann Bernoulli Institute for Mathematics and Computer Science, University of GroningenGroningenThe Netherlands

Personalised recommendations