Advertisement

Landauer’s limit and the physicality of information

  • Neal G. Anderson
Regular Article
Part of the following topical collections:
  1. Topical issue: The Physics of Micro-Energy Use and Transformation

Abstract

Landauer’s lower bound on the dissipative cost of information erasure is revisited within a new physical conception of information. The notion of strong physical information is introduced, and the new conception of physical information – observer-local referential (OLR) information – is defined, shown to be strongly physical, and related to other measures that arise in physical information contexts. A generalization of Landauer’s limit is then obtained for OLR information from quantum dynamics and entropic inequalities alone. Specializations of this bound are compared and contrasted to similar bounds under conditions for which they coincide, and important distinctions between seemingly identical bounds expressed in terms of various information measures are discussed. The controversial distinction between Landauer erasure of known and unknown data – and the alleged difference between their respective erasure costs – is then explored via OLR information. This physically grounds and clarifies distinctions between known and unknown data and between unconditional and conditional erasure operations, enables a straightforward physical accounting of associated lower bounds on erasure costs, and illustrates the advantages of OLR information for resolution of controversies related to the dissipative cost of information erasure. Applications of OLR information to determination of irreversibility induced dissipation bounds in more complex computing scenarios are briefly discussed.

References

  1. 1.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961) MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Nature 483, 187 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Jun, M. Gavrilov, J. Bechhoefer, Phys. Rev. Lett. 113, 19601 (2014) CrossRefGoogle Scholar
  4. 4.
    J. Hong, B. Lambson, S. Dhuey, J. Bokor, Sci. Adv. 2, 1501492 (2016) ADSCrossRefGoogle Scholar
  5. 5.
    A. Orlov, C.S. Lent, C.C. Thorpe, G.P. Boechler, G.L. Snider, Japan. J. Appl. Phys. 51, 06FE10 (2012) CrossRefGoogle Scholar
  6. 6.
    J. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015) CrossRefGoogle Scholar
  7. 7.
    S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 545 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    S. Ciliberto, Phys. Rev. X 7, 021051 (2017) Google Scholar
  9. 9.
    T.N. Theis, H.-S.P. Wong, Comput. Sci. Eng. 19, 41 (2017) CrossRefGoogle Scholar
  10. 10.
    T.M. Conte, E.P. DeBenedictis, P.A. Gargini, E. Track, Computer 50, 20 (2017) CrossRefGoogle Scholar
  11. 11.
    S.R. Williams, Comput. Sci. Eng. 19, 7 (2017) CrossRefGoogle Scholar
  12. 12.
    J. Koomey, S. Berard, M. Sanchez, H. Wong, IEEE Ann. Hist. Comp. 33, 46 (2011) CrossRefGoogle Scholar
  13. 13.
    J.D. Norton, Stud. Hist. Philos. Mod. Phys. 42, 184 (2011) CrossRefGoogle Scholar
  14. 14.
    N.G. Anderson, Inform. Sci. 415, 397 (2017) CrossRefGoogle Scholar
  15. 15.
    N.G. Anderson, Phys. Lett. A 372, 5552 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    A.S. Kholevo, Probl. Inf. Transm. 9, 177 (1973) MathSciNetGoogle Scholar
  17. 17.
    M.H. Partovi, Phys. Lett. A 137, 440 (1989) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C.H. Bennett, Stud. Hist. Philos. Mod. Phys. 34, 501 (2003) CrossRefGoogle Scholar
  19. 19.
    C.S. Lent, M. Liu, Y. Lu, Nanotechnology 17, 4240 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    M. Lopez-Suarez, I. Neri, L. Gammaitoni, Nat. Commun. 7, 12068 (2016) Google Scholar
  21. 21.
    N.G. Anderson, in Energy limits in computation – a review of Landauer’s principle, theory and experiments, edited by C.S. Lent, A.O. Orlov, W. Porod, G.L. Snider (Springer, New York, 2018) Google Scholar
  22. 22.
    N.G. Anderson, Int. J. Mod. Phys.: Conf. Ser. 33, 1460354 (2014) Google Scholar
  23. 23.
    N.G. Anderson, Phys. Lett. A 376, 1426 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    N.G. Anderson, Theor. Comp. Sci. 411, 4179 (2010) CrossRefGoogle Scholar
  25. 25.
    N. Ganesh, N.G. Anderson, in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI and Nanotechnol. Systems (2013), pp. 284–289 Google Scholar
  26. 26.
    I. Ercan, N.G. Anderson, IEEE Trans. Nanotechnol. 12, 1047 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    K.J. Stearns, N.G. Anderson, in Proc. 9th IEEE/ACM Int. Symp. on Nanoscale Architectures (2013), pp. 101–105 Google Scholar
  28. 28.
    N. Ganesh, N.G. Anderson, Phys. Lett. A 377, 3266 (2013) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    N.G. Anderson, I. Ercan, N. Ganesh, IEEE Trans. Nanotechnol. 12, 902 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Ricci, N.G. Anderson, in Proc. 2nd IEEE Intern. Conf. on Rebooting Computing (2017), pp. 1–4 Google Scholar
  31. 31.
    N.G. Anderson, in Proc. 50th Asilomar Conf. Signals, Syst., Comput. (2016), pp. 1653–1657 Google Scholar
  32. 32.
    N. Ganesh, N.G. Anderson, in Proc. 17th IEEE Int. Conf. on Nanotechnol. (2017), pp. 594–599 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations