Advertisement

Superconducting properties of molybdenum ruthenium alloy Mo0.63Ru0.37

  • Wensen Wei
  • Min Ge
  • Shasha Wang
  • Lei Zhang
  • Yuyan Han
  • Haifeng Du
  • Mingliang Tian
  • Yuheng Zhang
Regular Article
  • 57 Downloads

Abstract

Resistance, magnetization and specific heat measurements were performed on Mo0.63Ru0.37 alloy. All of them confirm that Mo0.63Ru0.37 becomes superconducting at about 7.0 K with bulk nature. Its upper critical field behavior fits to Werthamer-Helfand-Hohenberg (WHH) model quite well, with an upper critical field of μ0Hc2(0) = 8.64 T, less than its Pauli limit. Its electronic specific heat is reproduced by Bardeen-Cooper-Schriffer (BCS)-based α-model with a gap ratio Δ0 = 1.88k B T c , which is a little larger than the standard BCS value of 1.76. We concluded that Mo0.63Ru0.37 is a fully gapped isotropic s-wave superconductor, with its features are mostly consistent with the conventional theory.

Keywords

Solid State and Materials 

References

  1. 1.
    X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    M.W. Haverkort, I.S. Elfimov, L.H. Tjeng, G.A. Sawatzky, A. Damascelli, Phys. Rev. Lett. 101, 026406 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    K.K. Ng, M. Sigrist, Europhys. Lett. 49, 473 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    P.A. Frigeri, D.F. Agterberg, A. Koga, M. Sigrist, Phys. Rev. Lett. 92, 097001 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    S. Harada, J.J. Zhou, Y.G. Yao, Y. Inada, G.-Q. Zheng, Phys. Rev. B 86, 220502(R) (2012) ADSCrossRefGoogle Scholar
  6. 6.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955) ADSCrossRefGoogle Scholar
  7. 7.
    L.M. Roth, Phys. Rev. 173, 755 (1968) ADSCrossRefGoogle Scholar
  8. 8.
    E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960) Google Scholar
  9. 9.
    E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960) Google Scholar
  10. 10.
    E. Bauer, M. Sigrist (Eds.), Non-centrosymmetric superconductors: introduction and overview (Springer, Berlin, 2012) Google Scholar
  11. 11.
    W. Li, C. Jin, R. Che, W. Wei, L. Lin, H. Du, M. Tian, J. Zang, Phys. Rev. B 93, 060409(R) (2016) ADSCrossRefGoogle Scholar
  12. 12.
    W. Wei, G.J. Zhao, D.R. Kim, C. Jin, J.L. Zhang, L. Ling, L. Zhang, H. Du, T.Y. Chen, J. Zang, M. Tian, C.L. Chien, Y. Zhang, Phys. Rev. B 94, 104503 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    H. Takeya, M. ElMassalami, S. Kasahara, K. Hirata, Phys. Rev. B 76, 104506 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    C.P. Poole, Handbook of superconductivity (Academic Press, London, 2000) Google Scholar
  15. 15.
    E. Bauer, G. Rogl, X.Q. Chen, R.T. Khan, H. Michor, G. Hilscher, E. Royanian, K. Kumagai, D.Z. Li, Y.Y. Li, R. Podloucky, P. Rogl, Phys. Rev. B 82, 064511 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    V.H. Tran, W. Miiller, Z. Bukowski, Phys. Rev. Lett. 100, 137004 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    V. Yu. Verchenko, A.A. Tsirlin, A.O. Zubtovskiy, A.V. Shevelkov, Phys. Rev. B 93, 064501 (2016) ADSCrossRefGoogle Scholar
  18. 18.
    F.J. Morin, J.P. Maita, Phys. Rev. 129, 1115 (1963) ADSCrossRefGoogle Scholar
  19. 19.
    S. Barišić, J. Labbé, J. Friedel, Phys. Rev. Lett. 25, 919 (1970) ADSCrossRefGoogle Scholar
  20. 20.
    W.L. Johnson, S.J. Poon, J. Durand, P. Duwez, Phys. Rev. B 18, 206 (1978) ADSCrossRefGoogle Scholar
  21. 21.
    R. Gürler, J. Alloys Compd. 285, 133 (1999) CrossRefGoogle Scholar
  22. 22.
    S.E. Rasmussen, B. Lundtoft, Powder Diffr. 2, 29 (1987) ADSCrossRefGoogle Scholar
  23. 23.
    N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966) ADSCrossRefGoogle Scholar
  24. 24.
    H. Padamsee, J. E Neighbor, C.A. Shiffman, J. Low Temp. Phys. 12, 387 (1973) ADSCrossRefGoogle Scholar
  25. 25.
    A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004 Google Scholar
  26. 26.
    B.H. Toby, J. Appl. Crystallogr. 34, 210 (2010) CrossRefGoogle Scholar
  27. 27.
    P. Villars, K. Cenzual (Eds.), Mo5 Ru3(Mo0.6Ru0.4 ht) crystal structure: datasheet from “PAULING FILE Multinaries Edition – 2012” in Springer Materials Springer-Verlag Berlin Heidelberg, and Material Phase Data System (MPDS), Switzerland, and National Institute for Materials Science (NIMS), Japan Google Scholar
  28. 28.
    M. Zehetmayer, Supercond. Sci. Technol. 26, 043001 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    M. Tinkham, Introduction to superconductivity, 2nd edn. (Dover Publications Inc., New York, 2004), pp. 64–66 Google Scholar
  30. 30.
    F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979) ADSCrossRefGoogle Scholar
  31. 31.
    C.P. Poole Jr. H.A. Farach, R.J. Creswick, R. Prozorov, Superconductivity (Academic Press, Singapore, 2007), pp. 97–107 Google Scholar
  32. 32.
    W.L. Johnson, J. Appl. Phys. 50, 1557 (1979) ADSCrossRefGoogle Scholar
  33. 33.
    B. Mühlschlegel, Z. Phys. 155, 313 (1959) ADSCrossRefGoogle Scholar
  34. 34.
    W.L. McMillan, Phys. Rev. 167, 331 (1968) ADSCrossRefGoogle Scholar
  35. 35.
    A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003) ADSCrossRefGoogle Scholar
  36. 36.
    Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, K. Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Liu, Z.-Q. Mao, Physica C 514, 339 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wensen Wei
    • 1
    • 2
    • 3
  • Min Ge
    • 1
  • Shasha Wang
    • 2
    • 3
  • Lei Zhang
    • 2
  • Yuyan Han
    • 2
  • Haifeng Du
    • 2
    • 3
  • Mingliang Tian
    • 2
    • 3
  • Yuheng Zhang
    • 1
    • 2
    • 3
  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of ChinaHeifeiP.R. China
  2. 2.Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of SciencesHefeiP.R. China
  3. 3.Collaborative Innovation Center of Advanced Microstructures, Nanjing UniversityNanjingP.R. China

Personalised recommendations