Google matrix of Bitcoin network

  • Leonardo Ermann
  • Klaus M. Frahm
  • Dima L. ShepelyanskyEmail author
Regular Article


We construct and study the Google matrix of Bitcoin transactions during the time period from the very beginning in 2009 till April 2013. The Bitcoin network has up to a few millions of bitcoin users and we present its main characteristics including the PageRank and CheiRank probability distributions, the spectrum of eigenvalues of Google matrix and related eigenvectors. We find that the spectrum has an unusual circle-type structure which we attribute to existing hidden communities of nodes linked between their members. We show that the Gini coefficient of the transactions for the whole period is close to unity showing that the main part of wealth of the network is captured by a small fraction of users. In global the Google matrix analysis of bitcoin network gives a new understanding of the bitcoin transactions with PageRank and CheiRank characterization of sellers and buyers which are dominant not simply due to the sold/bought volume but also by taking into account if bitcoins are sold to (bought by) other important sellers (buyers).


Statistical and Nonlinear Physics  


  1. 1.
    S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System (2008), Available at: (accessed 10/25/2017)
  2. 2.
    Wikipedia contributors, Bitcoin, Available at:, Wikipedia (accessed 10/25/2017)
  3. 3.
    J. Bohannon, Science 351, 1144 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    A. Biryukov, D. Khovratovich, I. Pustogarov,[cs.CR] (2014)
  5. 5.
    F.R. Velde, Bitcoin: A primer, Chicago Fed Letter N.317, The Federal Reserve Bank of Chicago, 2013 Google Scholar
  6. 6.
    S. Bayliss, L. Harriss, Financial Technology (FinTech), (Houses of Parliament, Parliamentary Office of Science & Technology, Postnote Number, 2016), Vol. 525, (accessed 10/25/2017)
  7. 7.
    Wikipedia contributors, Cryptocurrency, Available at:, Wikipedia (accessed 10/25/2017)
  8. 8. (accessed 10/25/2017)
  9. 9.
    D. Ron, A. Shamir, Quantitative analysis of the full bitcoin transaction graph, in Financial Cryptography and Data Security, FC 2013, Lecture Notes in Computer Science, edited by AR. Sadeghi (Springer, Berlin, 2013), Vol. 7859, p. 6 Google Scholar
  10. 10.
    M. Ober, S. Katzenbeisser, K. Hamacher, Future Internet 5, 237 (2013) CrossRefGoogle Scholar
  11. 11.
    S.I. Marcin, Bitcoin Live: scalable system for detecting bitcoin network behaviors in real time (2015), Available at: Stanford (accessed 10/25/2017)
  12. 12.
    S. Dorogovtsev, Lectures on complex networks (Oxford University Press, Oxford, 2010) Google Scholar
  13. 13.
    S. Brin, L. Page, Computer Networks and ISDN Systems 30, 107 (1998) CrossRefGoogle Scholar
  14. 14.
    A.M. Langville, C.D. Meyer, Google’s PageRank and beyond: the science of search engine rankings (Princeton University Press, Princeton, 2006) Google Scholar
  15. 15.
    L. Ermann, K.M. Frahm, D.L. Shepelyansky, Rev. Mod. Phys. 87, 1261 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    L. Ermann, D.L. Shepelyansky, Acta Phys. Pol. A 120, A158 (2011) CrossRefGoogle Scholar
  17. 17.
    L. Ermann, D.L. Shepelyansky, Eur. Phys. J. B 88, 84 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    A.D. Chepelianskii,[cs.SE] (2010)
  19. 19.
    K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 76, 57 (2010) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    K.M. Frahm, A.D. Chepelianskii, D.L. Shepelyansky, J. Phys. A: Math. Theor. 45, 405101 (2012) CrossRefGoogle Scholar
  21. 21.
    K.M. Frahm, Y.-H. Eom, D.L. Shepelyansky, Phys. Rev. E 89, 052814 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    M. Fleder, M.S. Kester, S. Pillai,[cs/CR] (2015)
  23. 23.
    I. Brugere, Bitcoin transaction networks extraction (2013), Available at: (accessed October 2017)
  24. 24.
    T. Granlund, the GMP DEVELOPEMENT TEAM, GNU MP: the GNU multiple precision arithmetic library, Available at: (October 2017)
  25. 25.
    R. Meusel, S. Vigna, O. Lehmberg, C. Bizer, J. Web Sci. 1, 33 (2015) CrossRefGoogle Scholar
  26. 26.
    S.M. Krause, T.P. Peixoto, S. Bornholdt, PLoS ONE 8, e80303 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    K.M. Frahm, B. Georgeot, D.L. Shepelyansky, J. Phys. A: Math. Theor. 44, 465101 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    L. Ermann, K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 86, 193 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    G.W. Stewart, Matrix Algorithms, Volume II: Eigensystems (SIAM, 2001) Google Scholar
  30. 30.
    C. Gini, Variabilita e mutabilita, in Memorie di metodologica statistica, edited by E. Pizetti, T. Salvemini (Libreria Eredi Virgilio Veschi, Rome, 1955) Google Scholar
  31. 31.
    Wikipedia contributors, Gini coefficient, Available at:, Wikipedia (accessed 10/25/2017)
  32. 32.
    V.M. Yakovenko, J.B. Rosser Jr., Rev. Mod. Phys. 81, 1703 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    L. Ermann, D.L. Shepelyansky, Phys. Rev. E 81, 036221 (2010) ADSCrossRefGoogle Scholar
  34. 34.

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Leonardo Ermann
    • 1
  • Klaus M. Frahm
    • 2
  • Dima L. Shepelyansky
    • 2
    Email author
  1. 1.Departamento de Física Teórica, GIyA, Comisión Nacional de Energía AtómicaBuenos AiresArgentina
  2. 2.Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPSToulouseFrance

Personalised recommendations