Density correlations induced by temperature fluctuations in a photon gas

Regular Article
  • 194 Downloads

Abstract

The impact of angular temperature variations on the thermodynamic variables and real-space correlation functions of black-body radiation are analyzed. In particular, the effect of temperature fluctuations on the number density and energy density correlations of the cosmic microwave background (CMB) is studied. The angular temperature fluctuations are modeled by an isotropic and homogeneous Gaussian random field, whose autocorrelation function is defined on the unit sphere in momentum space. This temperature correlation function admits an angular Fourier transform which determines the density correlations in real space induced by temperature fluctuations. In the case of the CMB radiation, the multipole coefficients of the angular power spectrum defining the temperature correlation function have been measured by the Planck satellite. The fluctuation-induced perturbation of the equilibrium variables (internal energy, entropy, heat capacity and compressibility) can be quantified in terms of the measured multipole coefficients by expanding the partition function around the equilibrium state in powers of the temperature random field. The real-space density correlations can also be extracted from the measured temperature power spectrum. Both the number density and energy density correlations of the electromagnetic field are long-range, admitting power-law decay; in the case of the energy density correlation, the fluctuation-induced correlation overpowers the isotropic equilibrium correlation in the long-distance limit.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    Planck Collaboration, Astron. Astrophys. 594, A1 (2016) CrossRefGoogle Scholar
  2. 2.
    Planck Collaboration, Astron. Astrophys. 594, A11 (2016) CrossRefGoogle Scholar
  3. 3.
    Planck Legacy Archive, Release PR2, 2015, Available at: http://pla.esac.esa.int/pla/
  4. 4.
    G.-H. Liu, W. Li, G. Su, G.-S. Tian, Eur. Phys. J. B 87, 105 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    G.-H. Liu, L.-J. Kong, W.-L. You, Eur. Phys. J. B 88, 284 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    M. Wang, S.-J. Ran, T. Liu, Y. Zhao, Q.-R. Zheng, G. Su, Eur. Phys. J. B 89, 27 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    L. Pan, D. Zhang, H.-H. Hung, Y.-J. Liu, Eur. Phys. J. B 90, 105 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    S. Tarat, P. Majumdar, Eur. Phys. J. B 88, 68 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    W.C. Yu, S.-J. Gu, H.-Q. Lin, Eur. Phys. J. B 89, 212 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Fujiki, S. Mizutaka, K. Yakubo, Eur. Phys. J. B 90, 126 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Zhang, X. Li, Eur. Phys. J. B 88, 61 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    A. Mehri, S.M. Lashkari, Eur. Phys. J. B 89, 241 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Matsubara, Y. Hieida, S. Tadaki, Eur. Phys. J. B 86, 371 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    P. Wang, Z. Chang, H. Wang, H. Lu, Eur. Phys. J. B 90, 214 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    R. Tomaschitz, Physica A 483, 438 (2017) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Tomaschitz, Astropart. Phys. 84, 36 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    Pierre Auger Collaboration, J. Cosmol. Astropart. Phys. JCAP06, 026 (2017) Google Scholar
  18. 18.
    IceCube Collaboration, Astrophys. J. 826, 220 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    HAWC Collaboration, Astrophys. J. 796, 108 (2014) ADSCrossRefGoogle Scholar
  20. 20.
    L.D. Landau, E.M. Lifshitz, Quantum mechanics: non-relativistic theory, 3rd edn. (Pergamon, London, 1991) Google Scholar
  21. 21.
    R.G. Newton, Scattering theory of waves and particles (Springer, New York, 1982) Google Scholar
  22. 22.
    G.N. Watson, A treatise on the theory of Bessel functions (Cambridge University Press, Cambridge, 1996) Google Scholar
  23. 23.
    A.D. Jackson, L.C. Maximon, SIAM J. Math. Anal. 3, 446 (1972) MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Mehrem, Appl. Math. Comput. 217, 5360 (2011) MathSciNetGoogle Scholar
  25. 25.
    V.I. Fabrikant, Quart. Appl. Math. 71, 573 (2013) MathSciNetCrossRefGoogle Scholar
  26. 26.
    L.D. Landau, E.M. Lifshitz, Statistical physics, 3rd edn. (Pergamon, Oxford, 1980) Google Scholar
  27. 27.
    F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Eds.), NIST Digital Library of Mathematical Functions, Release 1.0.16, 2017, Availbale at: http://dlmf.nist.gov
  28. 28.
    R. Tomaschitz, Mon. Not. R. Astron. Soc. 427, 1363 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    Planck Collaboration, Astron. Astrophys. 571, A27 (2014) CrossRefGoogle Scholar
  30. 30.
    Pierre Auger Collaboration, Science 357, 1266 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    C. Patrignani et al., Chin. Phys. C 40, 100001 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sechsschimmelgasse 1/21-22ViennaAustria

Personalised recommendations