Advertisement

Modified spin–orbit couplings in uniaxially strained graphene

  • Hamed Rezaei
  • Arash Phirouznia
Regular Article
  • 18 Downloads

Abstract

Intrinsic and Rashba spin–orbit interactions in strained graphene is studied within the tight-binding (TB) approach. Dependence of Slater–Koster (SK) parameters of graphene on strain are extracted by fitting the ab initio band structure to the TB results. A generalized low-energy effective Hamiltonian in the presence of spin–orbit couplings (SOCs) is proposed for strained graphene subjected to an external perpendicular electric field. Dependence of the modified Rashba strength and other parameters of effective Hamiltonian on the strain and electric field are calculated. In order to analyze the influence of the applied strain on the electronic properties of the graphene, one must take into account the lattice deformation, modifications of the hopping amplitudes and shift of the Dirac points. We find that using the strain it is possible to control the strength of Rashba and intrinsic SOCs as well as energy gap at the shifted Dirac points. Meanwhile, the strain slightly modifies the topology of low-energy dispersion around the Dirac points. We describe the SOCs induced energy splitting as a function of strain.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Yao, F. Ye, X.L. Qi, S.C. Zhang, Z. Fang, Phys. Rev. B 75, 041401 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Boettger, S.B. Trickey, Phys. Rev. B 75, 121402 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 82, 245412 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, J. Fabian, Phys. Rev. B 80, 235431 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. Van Wees, Nature 448, 571 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    P. Ingenhoven, J.Z. Bernád, U. Zülicke, R. Egger, Phys. Rev. B 81, 035421 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    T. Stauber, J. Schliemann, New J. Phys. 11, 115003 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    G. Diniz, M. Guassi, F. Qu, J. Appl. Phys. 114, 243701 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    V.M. Pereira, A.H. Castro Neto, N.M.R. Peres, Phys. Rev. B 80, 045401 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    F.M.D. Pellegrino, G.G.N. Angilella, R. Pucci, Phys. Rev. B 81, 035411 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    F. Guinea, Solid State Commun. 152, 1437 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    D. Zhan, J. Yan, L. Lai, Z. Ni, L. Liu, Z. Shen, Adv. Mater. 24, 4055 (2012) CrossRefGoogle Scholar
  17. 17.
    M. Oliva-Leyva, G.G. Naumis, Phys. Rev. B 88, 085430 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    B. Gong, X.-H. Zhang, E.-H. Zhang, S.-L. Zhang, Mod. Phys. Lett. B 25, 823 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    T. Cheiwchanchamnangij, W.R.L. Lambrecht, Y. Song, H. Dery, Phys. Rev. B 88, 155404 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    C.R. Ast, I. Gierz, Phys. Rev. B 86, 085105 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    P.O. Löwdin, Phys. Rev. 139, A357 (1965) CrossRefGoogle Scholar
  23. 23.
    I.N. Yakovkin, Surf. Sci. 662, 1 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    V.P. Gusynin, S.G. Sharapov, A.A. Varlamov, Phys. Rev. B 90, 155107 (2014) ADSCrossRefGoogle Scholar
  25. 25.
    J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954) ADSCrossRefGoogle Scholar
  26. 26.
    M. Farjam, H. Rafii-Tabar, Phys. Rev. B 80, 167401 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    R.M. Ribeiro, V.M. Pereira, N.M.R. Peres, P.R. Briddon, A.H.C. Neto, New J. Phys. 11, 115002 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    X. Gonze et al., Comput. Phys. Commun. 205, 106 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    X. Gonze et al., Comput. Phys. Commun. 180, 2582 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    E. Kogan, V.U. Nazarov, V.M. Silkin, M. Kaveh, Phys. Rev. B 89, 165430 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 46, 1804 (1992) ADSCrossRefGoogle Scholar
  33. 33.
    L. Goodwin, J. Phys.: Condens. Matter 3, 3869 (1991) ADSGoogle Scholar
  34. 34.
    S. Konschuh, Spin-orbit coupling effects: from graphene to graphite, Ph.D. thesis, University of Regensburg, 2011 Google Scholar
  35. 35.
    S. Abdelouahed, A. Ernst, J. Henk, I.V. Maznichenko, I. Mertig, Phys. Rev. B 82, 125424 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    M.T. Ong, E.J. Reed, ACS Nano 6, 1387 (2012) CrossRefGoogle Scholar
  37. 37.
    A. Georgi, P. Nemes-Incze, R. Carrillo-Bastos, D. Faria, S. Viola Kusminskiy, D. Zhai, M. Schneider, D. Subramaniam, T. Mashoff, N.M. Freitag, M. Liebmann, M. Pratzer, L. Wirtz, C.R. Woods, R.V. Gorbachev, Y. Cao, K.S. Novoselov, N. Sandler, M. Morgenstern, Nano Lett. 17, 2240 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    Y. Jiang, T. Low, K. Chang, M.I. Katsnelson, F. Guinea, Phys. Rev. Lett. 110, 046601 (2013) ADSCrossRefGoogle Scholar
  39. 39.
    T. Stauber, J. Schliemann, New J. Phys. 11, 115003 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Condensed Matter Computational Research Lab, Azarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations