Advertisement

Equilibrium structures and flows of polar and nonpolar liquids in different carbon nanotubes

  • Andrey K. Abramyan
  • Nick M. Bessonov
  • Leonid V. Mirantsev
  • Anastasiia A. Chevrychkina
Regular Article
  • 60 Downloads

Abstract

Molecular dynamics (MD) simulations of equilibrium structures and flows of polar water and nonpolar methane confined by single-walled carbon nanotubes (SWCNTs) with circular and square cross sections and bounding walls with regular graphene structure and random (amorphous) distribution of carbon atoms have been performed. The results of these simulations show that equilibrium structures of both confined liquids depend strongly on the shape of the cross section of SWCNTs, whereas the structure of their bounding walls has a minor influence on these structures. On contrary, the external pressure driven water and methane flows through above mentioned SWCNTs depend significantly on both the shape of their cross sections and the structure of their bounding walls.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    B.I. Yakobson, E.S. Richard, Am. Sci. 85, 324 (1997) ADSGoogle Scholar
  3. 3.
    E.T. Thostenson, Z.F. Ren, T.W. Chou, Compos. Sci. Technol. 61, 1899 (2001) CrossRefGoogle Scholar
  4. 4.
    D. Qian, G.F. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Appl. Mech. Rev. 55, 495 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    C.Y. Wang, Y.Y. Zhang, C.M. Wang, V.B.C. Tan, J. Nanosci. Nanotech. 7, 4221 (2007) CrossRefGoogle Scholar
  6. 6.
    D.S. Bethune, C.H. Kiang, Nature 363, 605 (1993) ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33, 883 (1995) CrossRefGoogle Scholar
  8. 8.
    W.E. Thomas, Phys. Today 49, 26 (1996) Google Scholar
  9. 9.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes (Clarendon Press, Oxford, 1989) Google Scholar
  10. 10.
    P.G. Collins, P. Avouris, Sci. Am. 283, 62 (2000) CrossRefGoogle Scholar
  11. 11.
    J.K. Holt, H.P. Park, Y. Waang, M. Staderman, A.B. Artyukhin, C.P. Grigopopulos, A. Noy, O. Bakajin, Science 312, 1034 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nature 438, 44 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    M. Majumder, N. Choudhury, S.K. Ghosh, J. Chem. Phys. 127, 054706 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    N. Choudhury, B.M. Pettitt, J. Phys. Chem. 109, 6422 (2005) CrossRefGoogle Scholar
  15. 15.
    B. Mukherjee, P.K. Maiti, C. Dasgupta, A.K. Sood, J. Chem. Phys. 126, 124704 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    M. Melillo, F. Zhu, M.A. Snyder, J. Mittal, J. Phys. Chem. Lett. 2, 2978 (2011) CrossRefGoogle Scholar
  17. 17.
    N. Chopra, N. Choudhury, J. Phys. Chem. C 117, 18398 (2013) CrossRefGoogle Scholar
  18. 18.
    S.K. Kannam, B.D. Todd, J.S. Hansen, P. Davis, J. Chem. Phys. 138, 094701 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    J. Su, K. Yang, ChemPhysChem 16, 3488 (2015) CrossRefGoogle Scholar
  20. 20.
    X. Meng, J. Huang, Mol. Simul. 42, 215 (2015) CrossRefGoogle Scholar
  21. 21.
    A. Sam, S.K. Kannam, R. Hartkamp, S.P. Sathian, J. Chem. Phys. 146, 234701 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    M.E. Suk, N.R. Aluru, Nano. Micro. Thermophys. Eng. 21, 247 (2017) CrossRefGoogle Scholar
  23. 23.
    S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead, Environ. Phys. Toxicol. Chem. 29, 1825 (2008) CrossRefGoogle Scholar
  24. 24.
    M.S. Mauter, M. Elimelech, Sci. Technol. 42, 5843 (2008) CrossRefGoogle Scholar
  25. 25.
    A. Keller, S. McFerran, A. Lazareva, S. Suh, J. Nanoparticles Res. 15, 1 (2013) CrossRefGoogle Scholar
  26. 26.
    V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Sci. Total. Environ. 408, 1 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    S. Zhang, T. Shao, S.S.K. Bekaroblu, T. Karanfil, Water Res. 45, 1378 (2011) CrossRefGoogle Scholar
  28. 28.
    O.G. Opul, T. Karanfil, Water Res. 68, 34 (2015) CrossRefGoogle Scholar
  29. 29.
    D.B. Geohegan, A.A. Puretzky, I.N. Ivanov, S. Jesse, G. Eres, J.Y. Hove, Appl. Phys. Lett. 83, 1851 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    L.C. Venema, J.W.G. Wildoer, H.L.J.T. Tuinstra, C.C. Dekker, A.G. Rinzler, R.E. Smalley, Appl. Phys. Lett. 71, 2629 (1997) ADSCrossRefGoogle Scholar
  31. 31.
    S. Iijima, T. Ichihashi, Nature 363, 603 (1993) ADSCrossRefGoogle Scholar
  32. 32.
    D.S. Bethune, C.H. Kiang, M.S.D. Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993) ADSCrossRefGoogle Scholar
  33. 33.
    T. Hiraoka, S. Bundow, H. Shinohara, S. Iijima, Carbon 44, 1853 (2006) CrossRefGoogle Scholar
  34. 34.
    M.P. Siegal, D.L. Overmyer, P.P. Provencio, Appl. Phys. Lett. 80, 2171 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, J. Phys. Chem. B. 106, 2429 (2002) CrossRefGoogle Scholar
  36. 36.
    H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, S. Suzuki, Y. Achiba, Carbon 38, 1691 (2000) CrossRefGoogle Scholar
  37. 37.
    S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P. Eklund, Phys. Rev. Lett. 80, 3779 (1998) ADSCrossRefGoogle Scholar
  38. 38.
    H. Zhu, K. Suenaga, J. Wei, K. Wang, D. Wu, J. Cryst. Growth 310, 5473 (2008) ADSCrossRefGoogle Scholar
  39. 39.
    S. Reich, L. Li, J. Robertson, Chem. Phys. Lett. 421, 469 (2006) ADSCrossRefGoogle Scholar
  40. 40.
    P.A.S. Autreto, S.B. Legoas, M.Z.S. Flores, D.S. Galvao, J. Chem. Phys. 133, 124513 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    K. Mizutani, H. Kohno, Appl. Phys. Lett. 108, 263112 (2016) ADSCrossRefGoogle Scholar
  42. 42.
    L.V. Mirantsev, M.L. Lyra, Phys. Lett. A. 380, 1318 (2016) ADSCrossRefGoogle Scholar
  43. 43.
    O. Teleman, B. Jonsson, S. Engstrom, Mol. Phys. 60, 193 (1987) ADSCrossRefGoogle Scholar
  44. 44.
    J.H. Walther, R. Jaffe, T. Halicioglu, P. Koumoutsakos, J. Phys. Chem. B 105, 9980 (2001) CrossRefGoogle Scholar
  45. 45.
    M.P. Allen, D.J. Tildesly, Computer Simulations of Liquids (Clarendon Press, Oxford, 1989) Google Scholar
  46. 46.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984) ADSCrossRefGoogle Scholar
  47. 47.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988) ADSCrossRefGoogle Scholar
  48. 48.
    L. Wang, H. Hu, Proc. Math. Phys. Eng. Sci. 470, 20140087 (2014) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andrey K. Abramyan
    • 1
  • Nick M. Bessonov
    • 1
  • Leonid V. Mirantsev
    • 1
  • Anastasiia A. Chevrychkina
    • 1
  1. 1.Institute for Problems of Mechanical Engineering, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations