Advertisement

Electronic transport across a junction between armchair graphene nanotube and zigzag nanoribbon

Transmission in an armchair nanotube without a zigzag half-line of dimers
Regular Article

Abstract

Based on the well known nearest-neighbor tight-binding approximation for graphene, an exact expression for the electronic conductance across a zigzag nanoribbon/armchair nanotube junction is presented for non-interacting electrons. The junction results from the removal of a half-row of zigzag dimers in armchair nanotube, or equivalently by partial rolling of zigzag nanoribbon and insertion of a half-row of zigzag dimers in between. From the former point of view, a discrete form of Dirichlet condition is imposed on a zigzag half-line of dimers assuming the vanishing of wave function outside the physical structure. A closed form expression is provided for the reflection and transmission moduli for the outgoing wave modes for each given electronic wave mode incident from either side of the junction. It is demonstrated that such a contact junction between the nanotube and nanoribbon exhibits negligible backscattering, and the transmission has been found to be nearly ballistic. In contrast to the previously reported studies for partially unzipped carbon nanotubes (CNTs), using the same tight binding model, it is found that due to the “defect” there is certain amount of mixing between the electronic wave modes with even and odd reflection symmetries. But the junction remains a perfect valley filter for CNTs at certain energy ranges. Applications aside from the electronic case, include wave propagation in quasi-one-dimensional honeycomb structures of graphene-like constitution. The paper includes several numerical calculations, analytical derivations, and graphical results, which complement the provision of succinct closed form expressions.

Keywords

Solid State and Materials 

References

  1. 1.
    S. Iijima et al., Nature 354, 56 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Phys. Rev. B 71, 193406 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    S.J. Tans, A.R. Verschueren, C. Dekker, Nature 393, 49 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Nat. Phys. 3, 192 (2007) CrossRefGoogle Scholar
  7. 7.
    A.A. Balandin, Nat. Mater. 10, 569 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996) ADSCrossRefGoogle Scholar
  10. 10.
    J.W. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391, 59 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    X. Jia et al., Science 323, 1701 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Nature 496, 196 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Pennec, J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, P.A. Deymier, Surf. Sci. Rep. 65, 229 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    M. Polini, F. Guinea, M. Lewenstein, H.C. Manoharan, V. Pellegrini, Nat. Nanotechnol. 8, 625 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    R. Saito, G. Dresselhaus, M. Dresselhaus, Physical properties of carbon nanotubes (Imperial College Press, London, 1998) Google Scholar
  16. 16.
    N. Agra"i"t, A.L. Yeyati, J.M. Van Ruitenbeek, Phys. Rep. 377, 81 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    M. Fuhrer et al., Science 288, 494 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    A.L. Elías, A.R. Botello-Méndez, D. Meneses-Rodríguez, V. Jehová González, D. Ramírez-González, L. Ci, E. Muñoz-Sandoval, P.M. Ajayan, H. Terrones, M. Terrones, Nano Lett. 10, 366 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    A. Cano-Márquez, F. Rodríguez-Macías, J. Campos-Delgado, C. Espinosa-González, F. Tristán-López, D. Ramírez-González, D. Cullen, D. Smith, M. Terrones, Y. Vega-Cantú, Nano Lett. 9, 1527 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    Y. Yoon, S. Salahuddin, Appl. Phys. Lett. 97, 033102 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    S. Costamagna, A. Schulz, L. Covaci, F. Peeters, Appl. Phys. Lett. 100, 232104 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    J.S. Friedman, A. Girdhar, R.M. Gelfand, G. Memik, H. Mohseni, A. Taflove, B.W. Wessels, J.P. Leburton, A.V. Sahakian, Nat. Commun. 8, 15635 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    H. Santos, L. Chico, L. Brey, Phys. Rev. Lett. 103, 086801 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    Y.O. Klymenko, Eur. Phys. J. B 77, 433 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    L. Chico, H. Santos, A. Ayuela, W. Jaskólski, M. Pelc, L. Brey, Acta Phys. Pol. A 118, 433 (2010) CrossRefGoogle Scholar
  30. 30.
    K.L. Ma, X.H. Yan, Y.D. Guo, Y. Xiao, Eur. Phys. J. B 83, 487 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    B.L. Sharma, Z. Angew. Math. Phys. 69, 16 (2018) CrossRefGoogle Scholar
  32. 32.
    J.B. David, K. Ferry, S.M. Goodnick, Transport in nanostructures, 2nd edn. (Cambridge University Press, Cambridge, UK, 2009) Google Scholar
  33. 33.
    M. Brandbyge, M.R. Sørensen, K.W. Jacobsen, Phys. Rev. B 56, 14956 (1997) ADSCrossRefGoogle Scholar
  34. 34.
    M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    P.R. Wallace, Phys. Rev. 71, 622 (1947) ADSCrossRefGoogle Scholar
  36. 36.
    J. Callaway, Energy band theory, in Pure and applied physics (Academic Press, New York, 1964) Google Scholar
  37. 37.
    E. Hückel, Z. Phys. 60, 423 (1930) ADSCrossRefGoogle Scholar
  38. 38.
    R. Mittra, Y.L. Hou, V. Jamnejad, IEEE Trans. Microw. Theory Tech. 28, 36 (1980) ADSCrossRefGoogle Scholar
  39. 39.
    J.T. Londergan, J.P. Carini, D.P. Murdock, Binding and scattering in two-dimensional systems: applications to quantum wires, waveguides, and photonic crystals, 1st edn. Lecture notes in physics monographs, (Springer, Berlin, Heidelberg, 2000) Google Scholar
  40. 40.
    S. Datta, in Electronic transport in mesoscopic systems. Cambridge studies in semiconductor physics and microelectronic engineering (Cambridge University Press, Cambridge, UK, 1995), Vol. 3 Google Scholar
  41. 41.
    B. Noble, Methods based on the Wiener–Hopf technique (Pergamon Press, London, 1958) Google Scholar
  42. 42.
    B.L. Sharma, Z. Angew. Math. Phys. 66, 3591 (2015) MathSciNetCrossRefGoogle Scholar
  43. 43.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957) CrossRefGoogle Scholar
  44. 44.
    R. Landauer, Phys. Scripta 1992, 110 (1992) CrossRefGoogle Scholar
  45. 45.
    C. Hamaguchi, Quantum structures (Springer, Berlin, Heidelberg, 2001), p. 307 Google Scholar
  46. 46.
    P.L. Chebyshev, Mém. Acad. Sci. Pétersb. 7, 539 (1854) Google Scholar
  47. 47.
    J.C. Mason, D.C. Handscomb, Chebyshev polynomials (Chapman & Hall/CRC, Boca Raton, FL, 2003) Google Scholar
  48. 48.
    N. Cortés, L. Chico, M. Pacheco, L. Rosales, P. Orellana, EPL 108, 46008 (2014) ADSCrossRefGoogle Scholar
  49. 49.
    P. Orellana, L. Rosales, L. Chico, M. Pacheco, J. Appl. Phys. 113, 213710 (2013) ADSCrossRefGoogle Scholar
  50. 50.
    B.L. Sharma, Waves Random Complex Media 28, 96 (2018) MathSciNetCrossRefGoogle Scholar
  51. 51.
    A. Weisshaar, J. Lary, S.M. Goodnick, V.K. Tripathi, J. Appl. Phys. 70, 355 (1991) ADSCrossRefGoogle Scholar
  52. 52.
    W.D. Sheng, J. Phys. Condens. Matter 9, 8369 (1997) ADSCrossRefGoogle Scholar
  53. 53.
    B.L. Sharma, Wave Motion 65, 55 (2016) MathSciNetCrossRefGoogle Scholar
  54. 54.
    B.L. Sharma, Wave Motion 59, 52 (2015) MathSciNetCrossRefGoogle Scholar
  55. 55.
    B.L. Sharma, Z. Angew. Math. Phys. 66, 2719 (2015) MathSciNetCrossRefGoogle Scholar
  56. 56.
    K. Yates, Hückel molecular orbital theory (Academic Press, New York, 1978) Google Scholar
  57. 57.
    E. Economou, Green’s functions in quantum physics (Springer, Heidelberg, 1979) Google Scholar
  58. 58.
    B.L. Sharma, Int. J. Solids Struct. 80, 465 (2016) CrossRefGoogle Scholar
  59. 59.
    M.J. Ablowitz, A.S. Fokas, Complex variables: introduction and applications (Cambridge University Press, Cambridge, UK, New York, 1997) Google Scholar
  60. 60.
    A. Weisshaar, J. Lary, S. Goodnick, V. Tripathi, Appl. Phys. Lett. 55, 2114 (1989) ADSCrossRefGoogle Scholar
  61. 61.
    K. Wakabayashi, Y. Takane, M. Yamamoto, M. Sigrist, Carbon 47, 124 (2009) CrossRefGoogle Scholar
  62. 62.
    B.L. Sharma, SIAM J. Appl. Math. 76, 1355 (2016) MathSciNetCrossRefGoogle Scholar
  63. 63.
    T. Wehling, A.M. Black-Schaffer, A.V. Balatsky, Adv. Phys. 63, 1 (2014) ADSCrossRefGoogle Scholar
  64. 64.
    Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Phys. Rev. B 73, 125415 (2006) ADSCrossRefGoogle Scholar
  65. 65.
    B. Wang, J. Wang, Phys. Rev. B 81, 045425 (2010) ADSCrossRefGoogle Scholar
  66. 66.
    Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006) ADSCrossRefGoogle Scholar
  67. 67.
    L. Yang, C.H. Park, Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 99, 186801 (2007) ADSCrossRefGoogle Scholar
  68. 68.
    Y.V. Nazarov, Quantum transport: introduction to nanoscience, 1st edn. (Cambridge University Press, Cambridge, UK, 2009) Google Scholar
  69. 69.
    F.A. Buot, Phys. Rep. 234, 73 (1993) ADSCrossRefGoogle Scholar
  70. 70.
    T. Ihn, in Electronic quantum transport in mesoscopic semiconductor structures, 1st edn. Springer tracts in modern physics, (Springer-Verlag, New York, 2004), Vol. 192 Google Scholar
  71. 71.
    D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones, J. Phys. C: Solid State Phys. 21, L209 (1988) ADSCrossRefGoogle Scholar
  72. 72.
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988) ADSCrossRefGoogle Scholar
  73. 73.
    J. Park, G. He, R.M. Feenstra, A.P. Li, Nano Lett. 13, 3269 (2013) ADSCrossRefGoogle Scholar
  74. 74.
    R. Egger, A.O. Gogolin, Phys. Rev. Lett. 79, 5082 (1997) ADSCrossRefGoogle Scholar
  75. 75.
    C. Kane, L. Balents, M.P.A. Fisher, Phys. Rev. Lett. 79, 5086 (1997) ADSCrossRefGoogle Scholar
  76. 76.
    A.R. Hernández, C.H. Lewenkopf, Phys. Rev. B 86, 155439 (2012) ADSCrossRefGoogle Scholar
  77. 77.
    J. Tworzydło, C. Groth, C. Beenakker, Phys. Rev. B 78, 235438 (2008) ADSCrossRefGoogle Scholar
  78. 78.
    L.I. Slepyan, Models and phenomena in fracture mechanics (Springer, New York, Berlin, Heidelberg, 2002) Google Scholar
  79. 79.
    B.L. Sharma, SIAM J. Appl. Math. 75, 1171 (2015) MathSciNetCrossRefGoogle Scholar
  80. 80.
    B.L. Sharma, Sādhanā 42, 901 (2017) Google Scholar
  81. 81.
    N. Wiener, E. Hopf, Sitzungsber. Preuss. Akad. Wiss. Berl. Phys. Math. 32, 696 (1931) Google Scholar
  82. 82.
    I. Singer, E. Turkel, J. Comput. Phys. 201, 439 (2004) ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    J.P. Berenger, J. Comput. Phys. 114, 185 (1994) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations