Advertisement

Cessation of oscillations in a chemo-mechanical oscillator

  • Richa Phogat
  • Ishant Tiwari
  • Pawan Kumar
  • Marco Rivera
  • Punit Parmananda
Regular Article
  • 42 Downloads

Abstract

In this paper, different methods for cessation of oscillations in a chemo-mechanical oscillator [mercury beating heart (MBH)] are presented. The first set of experiments were carried out on a single MBH oscillator. To achieve cessation of oscillations, two protocols, namely, inverted feedback and delayed feedback were employed. In the second set of experiments, two quasi-identical MBH oscillators are considered. They are first synchronized via a bidirectional attractive coupling. These two synchronized oscillators are thereafter coupled with a unidirectional repulsive coupling and the system dynamics were observed. Subsequently, in the next protocol, the effect of a unidirectional delay coupling on the two synchronized oscillators was explored. The cessation of oscillations in all the above experimental setups was observed as the feedback/coupling was switched on at a suitable strength. Oscillatory dynamics of the system were restored when the feedback/coupling was switched off.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    G. Lippmann, Ann. Phys. 225, 546 (1873) CrossRefGoogle Scholar
  2. 2.
    D. Avnir, J. Chem. Educ. 66, 211 (1989) CrossRefGoogle Scholar
  3. 3.
    C.W. Kim, I.H. Yeo, W.K. Paik, Electrochim. Acta 41, 2829 (1996) CrossRefGoogle Scholar
  4. 4.
    J. Olson, C. Ursenbach, V.I. Birss, W.G. Laidlaw, J. Phys. Chem. 93, 8258 (1989) CrossRefGoogle Scholar
  5. 5.
    E. Ramírez-Álvarez, J.L. Ocampo-Espindola, F. Montoya, F. Yousif, F. Vázquez, M. Rivera, J. Phys. Chem. A 118, 10673 (2014) CrossRefGoogle Scholar
  6. 6.
    D.K. Verma, A.Q. Contractor, P. Parmananda, J. Phys. Chem. A 117, 267 (2013) CrossRefGoogle Scholar
  7. 7.
    D.K. Verma, H. Singh, P. Parmananda, A.Q. Contractor, M. Rivera, Chaos Interdiscip. J. Nonlinear Sci. 25, 064609 (2015) CrossRefGoogle Scholar
  8. 8.
    S. Smolin, R. Imbihl, J. Phys. Chem. 100, 19055 (1996) CrossRefGoogle Scholar
  9. 9.
    P. Kumar, D.K. Verma, P. Parmananda, S. Boccaletti, Phys. Rev. E 91, 062909 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    P. Kumar, D.K. Verma, P. Parmananda, Phys. Lett. A 381, 2337 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    P. Kumar, P. Parmananda, Chaos 28, 045105 (2018) ADSCrossRefGoogle Scholar
  12. 12.
    A. Biswas, D. Das, P. Parmananda, Phys. Rev. E 95, 042202 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    P. Parmananda, M. Hildebrand, M. Eiswirth, Phys. Rev. E 56, 239 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    P.M. Gade, Phys. Rev. E 57, 7309 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    P. Parmananda, R. Madrigal, M. Rivera, L. Nyikos, I.Z. Kiss, V. Gáspár, Phys. Rev. E 59, 5266 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    P. Parmananda, P. Sherard, R.W. Rollins, H.D. Dewald, Phys. Rev. E 47, R3003 (1993) ADSCrossRefGoogle Scholar
  17. 17.
    P. Parmananda, Phys. Rev. E 67, 045202 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    F. Mormann, K. Lehnertz, P. David, C.E. Elger, Physica D 144, 358 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    L. Kocarev, U. Parlitz, Phys. Rev. Lett. 74, 5028 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    L. Glass, Nature 410, 277 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: a universal concept in non-linear sciences (Cambridge University Press, Cambridge, 2001) Google Scholar
  22. 22.
    J.M. Cruz, J. Escalona, P. Parmananda, R. Karnatak, A. Prasad, R. Ramaswamy, Phys. Rev. E 81, 046213 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    I. Waller, R. Kapral, Phys. Lett. A 105, 163 (1984) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Li, W. Sun, J. Kurths, Phys. Rev. E 76, 046204 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    H.U. Voss, Phys. Rev. E 61, 5115 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    P. Parmananda, Phys. Rev. E 56, 1595 (1997) ADSCrossRefGoogle Scholar
  27. 27.
    S. Sinha, Phys. Rev. E 66, 016209 (2002) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    D.K. Verma, H. Singh, A.Q. Contractor, P. Parmananda, J. Phys. Chem. A 118, 4647 (2014) CrossRefGoogle Scholar
  29. 29.
    V. Resmi, G. Ambika, R.E. Amritkar, Phys. Rev. E 84, 046212 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    P.M. Gade, G. Rangarajan, Chaos Interdiscip. J. Nonlinear Sci. 23, 033104 (2013) CrossRefGoogle Scholar
  31. 31.
    A. Koseska, E. Volkov, J. Kurths, Phys. Rep. 531, 173 (2013) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    D.V.R. Reddy, A. Sen, G.L. Johnston, Phys. Rev. Lett. 80, 5109 (1998) ADSCrossRefGoogle Scholar
  33. 33.
    D.V.R. Reddy, A. Sen, G.L. Johnston, Phys. Rev. Lett. 85, 3381 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    A. Prasad, Phys. Rev. E 72, 056204 (2005) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Dasgupta, M. Rivera, P. Parmananda, Chaos Interdiscip. J. Nonlinear Sci. 20, 023126 (2010) CrossRefGoogle Scholar
  36. 36.
    T. Singla, N. Pawar, P. Parmananda, Phys. Rev. E 83, 026210 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Richa Phogat
    • 1
  • Ishant Tiwari
    • 1
  • Pawan Kumar
    • 1
  • Marco Rivera
    • 2
  • Punit Parmananda
    • 1
  1. 1.Department of PhysicsIndian Institute of Technology, BombayMumbaiIndia
  2. 2.Centro de Investigación en Ciencias – (IICBA), UAEMCuernavacaMexico

Personalised recommendations