Waveguides as sources of short-wavelength spin waves for low-energy ICT applications

  • Adam Papp
  • György Csaba
  • Himadri Dey
  • Marco MadamiEmail author
  • Wolfgang Porod
  • Giovanni Carlotti
Regular Article
Part of the following topical collections:
  1. Topical issue: The Physics of Micro-Energy Use and Transformation


Spin waves offer intriguing possibilities for transmitting and processing information in future low-power electronics. Most proposed devices, however, require the efficient excitation and detection of spin waves in the sub-micrometer range, that is a rather challenging task. In fact, coplanar and microstrip waveguides have been widely used in the past to excite and detect spin waves with wavelengths of tens of microns in thin films of both metallic ferromagnets and on magnetic insulators, but the scalability of these structures micrometer or sub-micrometer have not been investigated in detail. In this study, we present a combined experimental/computational study of a few possible input structures consisting of either symmetrical or asymmetrical coplanar waveguides on top of CoFe films, with widths going all the way down to 250 nm. The primary goal of this work is to present a case study, aiming to explore the limitations of waveguides in creating short-wavelength spin waves for future nanoelectronic applications. We use micro-focused Brillouin light scattering measurements and micromagnetic simulations to analyze the characteristics of the emitted spin waves, achieving reasonable agreement between experiment and simulations. We find that due to the inherently delocalized field distributions of waveguides, and also to the relatively high resistivity of narrow waveguides, they all show poor efficiency for generating spin waves with wavelength below about 2 μm, corresponding to frequencies above 10 GHz in a moderate external field. This means that the intensity of the generated spin waves for a given input power drops quickly for the frequency/wavelength range which is most relevant for emerging applications. This case study demonstrates many of the inherent inefficiencies and limitations of waveguide-based spin wave generation in this regime. Our work supports the conclusion that one may have to use a different mechanism for spin wave generation, exploiting multiferroic structures, spin-orbit torques or nanopatterned, multi-layered magnetic materials, all being the subject of intense current research.


  1. 1.
    G. Csaba, A. Papp, W. Porod, Phys. Lett. A 381, 1471 (2017) ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Chumak, A.A. Serga, B. Hillebrands, Nat. Commun. 5, 4700 (2014) ADSCrossRefGoogle Scholar
  3. 3.
    A. Khitun, K.L. Wang, Superlattices Microstruct. 38, 184 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    G. Csaba, A. Papp, W. Porod, J. Appl. Phys. 115, 17C741 (2014) CrossRefGoogle Scholar
  5. 5.
    A. Khitun, K.L. Wang, Superlattices Microstruct. 38, 184 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    A. Khitun, A. Kozhanov, Magnonic logic devices, in Nanomagnetic and spintronic devices for energy-efficient memory and computing, edited by J. Atulasimha, S. Bandyopadhyay (Virginia Commonwealth University, US), pp. 189–219 Google Scholar
  7. 7.
    Á. Papp, W. Porod, Á.I. Csurgay, G. Csaba, Sci. Rep. 7, 9245 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    D.R. Birt et al., Appl. Phys. Lett. 101, 252409 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    M. Covington, T.M. Crawford, G.J. Parker, Phys. Rev. Lett. 89, 237202 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    S. Maendl, I. Stasinopoulos, D. Grundler, Appl. Phys. Lett. 111, 012403 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    L. Fallarino, M. Madami, G. Duerr, D. Grundler, G. Gubbiotti, S. Tacchi, G. Carlotti, IEEE Trans. Magn. 49, 1033 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    J. Stigloher, M. Decker, H. Körner, K. Tanabe, T. Moriyama, T. Taniguchi, H. Hata, M. Madami, G. Gubbiotti, K. Kobayashi, T. Ono, C.H. Back, Phys. Rev. Lett. 117, 037204 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    V.E. Demidov, M.P. Kostylev, K. Rott, P. Krzysteczko, G. Reiss, S.O. Demokritov, Appl. Phys. Lett. 95, 112509 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    S. Tacchi, G. Gubbiotti, M. Madami, G. Carlotti, J. Phys.: Condens. Matter 29, 073001 (2017) ADSGoogle Scholar
  15. 15.
    M. Madami, G. Gubbiotti, S. Tacchi, G. Carlotti, Application of micro-focused Brillouin light scattering to the study of spin waves in low dimensional magnetic system, in Solid state physics, edited by R.E. Camley, R.L. Stamps (Elsevier, Amsterdam, 2013), Vol. 62 Google Scholar
  16. 16.
    K. Vogt, H. Schulteiss, S.J. Hermsdoerfer, P. Pirro, A.A. Serga, B. Hillebrands, Appl. Phys. Lett. 95, 182508 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    Interagency Report NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, MD, 1999), Available at:
  18. 18.
  19. 19.
    D.D. Stancil, A. Prabhakar, in Spin waves: theory and applications (Springer London Limited, London, 2009), pp. 141 and 155 Google Scholar
  20. 20.
    S. Kaka et al., Nature 437, 389 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    P. Li et al., Nat. Commun. 7, 12688 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    S. Cherepov et al., Appl. Phys. Lett. 104, 082403 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    L. Chuanpu et al., Nat. Commun. 9, 738 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Adam Papp
    • 1
  • György Csaba
    • 1
  • Himadri Dey
    • 2
  • Marco Madami
    • 3
    Email author
  • Wolfgang Porod
    • 2
  • Giovanni Carlotti
    • 3
  1. 1.Faculty for Information Technology, Peter Pazmany Catholic UniversityBudapestHungary
  2. 2.NDNano, Department of Electrical Engineering, University of Notre DameNotre Dame, IndianaUSA
  3. 3.Dipartimento di Fisica e Geologia, Università di PerugiaPerugiaItaly

Personalised recommendations