Advertisement

Fundamental energy limits of SET-based Brownian NAND and half-adder circuits

Preliminary findings from a physical-information-theoretic methodology
Regular Article
Part of the following topical collections:
  1. Topical issue: The Physics of Micro-Energy Use and Transformation

Abstract

The saturation in the efficiency and performance scaling of conventional electronic technologies brings about the development of novel computational paradigms. Brownian circuits are among the promising alternatives that can exploit fluctuations to increase the efficiency of information processing in nanocomputing. A Brownian cellular automaton, where signals propagate randomly and are driven by local transition rules, can be made computationally universal by embedding arbitrary asynchronous circuits on it. One of the potential realizations of such circuits is via single electron tunneling (SET) devices since SET technology enable simulation of noise and fluctuations in a fashion similar to Brownian search. In this paper, we perform a physical-information-theoretic analysis on the efficiency limitations in a Brownian NAND and half-adder circuits implemented using SET technology. The method we employed here establishes a solid ground that enables studying computational and physical features of this emerging technology on an equal footing, and yield fundamental lower bounds that provide valuable insights into how far its efficiency can be improved in principle. In order to provide a basis for comparison, we also analyze a NAND gate and half-adder circuit implemented in complementary metal oxide semiconductor technology to show how the fundamental bound of the Brownian circuit compares against a conventional paradigm.

References

  1. 1.
    A. Mämmelä, A. Anttonen, IEEE Circ. Syst. Mag. 17, 13 (2017) CrossRefGoogle Scholar
  2. 2.
    R.S. Williams, E.P. DeBenedictis, OSTP nanotechnology inspired grand challenge, in Proc. of IEEE Rebooting Computing (2015) Google Scholar
  3. 3.
    N.G. Anderson, İ. Ercan, N. Ganesh, Poster presented at the 4th IEEE Rebooting Computing Summit (2015) Google Scholar
  4. 4.
    F. Peper, J. Lee, J. Carmona, J. Cortadella, K. Morita, ACM J. Emerg. Technol. Comput. Syst. 9, 3 (2013) CrossRefGoogle Scholar
  5. 5.
    J. Lee, F. Peper, S.D. Cotofana, M. Naruse, M. Ohtsu, T. Kawazoe, Y. Takashi, T. Shimokawa, L. Kish, T. Kubota, Int. J. Unconv. Comput. 12, 341 (2016) Google Scholar
  6. 6.
    C. Meenderinck, S. Cotofana, IEEE Trans. Nanotechnol. 6, 451 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    R. Landauer, Phys. Lett. A 217, 188 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    N.G. Anderson, Inf. Sci. 415–416, 397 (2017) CrossRefGoogle Scholar
  9. 9.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961) CrossRefGoogle Scholar
  10. 10.
    N.G. Anderson, Theor. Comput. Sci. 411, 4179 (2010) CrossRefGoogle Scholar
  11. 11.
    İ. Ercan, N.G. Anderson, in Lecture notes in computer science, edited by N.G. Anderson, S. Bhanja (2014), Vol. 8280, p. 357 Google Scholar
  12. 12.
    İ. Ercan, N. Anderson, IEEE Trans. Nanotechnol. 12, 1047 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    N.G. Anderson, İ. Ercan, N. Ganesh, IEEE Trans. Nanotechnol. 12, 902 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    N. Ganesh, N.G. Anderson, Phys. Lett. A 377, 3266 (2013) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982) CrossRefGoogle Scholar
  16. 16.
    J. Norton, Found. Phys. 43, 1384 (2013) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    P. Strasberg, J. Cerrillo, G. Schaller, T. Brandes, Phys. Rev. E 92, 042104 (2015) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Kosina, C. Wasshuber, S. Selberherr, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 16, 937 (1997) CrossRefGoogle Scholar
  19. 19.
    I.O. Agbo, Design and simulation of single electron tunneling circuits for Brownian motion based logic and arithmetic computation, Computer Engineering M.S. thesis, 2010 Google Scholar
  20. 20.
    İ. Ercan, O. Susam, M. Altun, M.H. Clasun, in IEEExplore Proceedings of SMACD’17: International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (2017) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical and Electronics Engineering Department, Boğaziçi UniversityİstanbulTurkey

Personalised recommendations