Adsorption of magnetic transition metals on borophene: an ab initio study
- 45 Downloads
Abstract
We explore the doping strategy for adsorbing different metallic 3d transition-metal atoms (Fe, Co and Ni) on two different polymorphs of borophene monolayer: 2-Pmmn and 8-Pmmn borophene. Both have energy dispersion, with 2-Pmmn borophene being metallic in nature, and 8-Pmmn borophene being semi-metallic with a tilted Dirac cone like dispersion. Using density functional theory based calculations, we find the most suitable adsorption site for each adatom, and calculate the binding energy, binding energy per atom, charge transfer, density of states and magnetic moment of the resulting borophene-adatom system. We show that Ni is the most effective for electron doping for both the polymorphs. Additionally Fe is the most suitable to magnetically dope 8-Pmmn borophene, while Co is the best for magnetically doping 2-Pmmn borophene.
Keywords
Solid State and MaterialsReferences
- 1.A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
- 2.K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353, 461 (2016) CrossRefGoogle Scholar
- 3.A. Zurutuza, C. Marinelli, Nat. Nano 9, 730 (2014) CrossRefGoogle Scholar
- 4.S.Z. Butler et al., ACS Nano 7, 2898 (2013) CrossRefGoogle Scholar
- 5.K.F. Mak, J. Shan, Nat. Photon. 10, 216 (2016) ADSCrossRefGoogle Scholar
- 6.Z. Sun, A. Martinez, F. Wang, Nat. Photon. 10, 227 (2016) ADSCrossRefGoogle Scholar
- 7.J. Zhou, M.M. Wu, X. Zhou, Q. Sun, Appl. Phys. Lett. 95, 103108 (2009) ADSCrossRefGoogle Scholar
- 8.A.J. Mannix et al., Science 350, 1513 (2015) ADSCrossRefGoogle Scholar
- 9.B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Nat. Chem. 8, 563 (2016) CrossRefGoogle Scholar
- 10.X.B. Li, S.Y. Xie, H. Zheng, W.Q. Tianc, H.B. Sun, Nanoscale 7, 18863 (2015) ADSCrossRefGoogle Scholar
- 11.K.C. Lau, R. Pandey, Phys. Chem. C 111, 2906 (2007) CrossRefGoogle Scholar
- 12.E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Nano Lett. 12, 2441 (2012) ADSCrossRefGoogle Scholar
- 13.Z.A. Piazza, H.S. Hu, W.L. Li, Nat. Commun. 5, 3113 (2014) CrossRefGoogle Scholar
- 14.Z. Zhang, E.S. Penev, B.I. Yakobson, Nat. Chem. 8, 525 (2016) CrossRefGoogle Scholar
- 15.X.F. Zhou, X. Dong, A.R. Oganov, Q. Zhu, Y. Tian, H.T. Wang, Phys. Rev. Lett. 112, 085502 (2014) ADSCrossRefGoogle Scholar
- 16.K. Sadhukan, A. Agarwal, Phys. Rev. B 96, 035410 (2017) ADSCrossRefGoogle Scholar
- 17.A. Lopez-Bezanilla, P.B. Littlewood, Phys. Rev. B 93, 241405 (2016) ADSCrossRefGoogle Scholar
- 18.A.D. Zabolotskiy, Y.E. Lozovik, Phys. Rev. B 94, 165403 (2016) ADSCrossRefGoogle Scholar
- 19.B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhu, J. Mater. Chem. C 4, 3592 (2016) CrossRefGoogle Scholar
- 20.R.C. Xiao, D.F. Shao, W.J. Lu, H.Y. Lv, J.Y. Li, Y.P. Sun, Appl. Phys. Lett. 109, 122604 (2016) ADSCrossRefGoogle Scholar
- 21.A. Lherbier, A.R. Botello-Méndez, J.C. Charlier, 2D Mater. 3, 045006 (2016) CrossRefGoogle Scholar
- 22.T. Hu, J. Hong, J. Phys. Chem. C 119, 8199 (2015) CrossRefGoogle Scholar
- 23.M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766 (2013) CrossRefGoogle Scholar
- 24.K.T. Chan, J.B. Neaton, M.L. Cohen, Phys. Rev. B 77, 235430 (2008) ADSCrossRefGoogle Scholar
- 25.Y. Mao, J. Yuan, J. Zhong, J. Phys.: Condens. Matter 20, 115209 (2008) ADSGoogle Scholar
- 26.Z. Li, W. Xie, X. Liu, Y. Wu, J. Appl. Phys. 117, 084311 (2015) ADSCrossRefGoogle Scholar
- 27.J. Gómez Díaz, Y. Ding, R. Koitz, A.P. Seitsonen, M. Iannuzzi, J. Hutter, Theor. Chem. Acc. 132, 241405 (2013) CrossRefGoogle Scholar
- 28.F.D. Natterer, F.M.C. Patthey, H. Brune, Phys. Rev. Lett. 109, 066101 (2012) ADSCrossRefGoogle Scholar
- 29.P. Rastogi, S. Kumar, S. Bhowmick, A. Agarwal, Y.S. Chauhan, J. Phys. Chem. C 118, 30309 (2014) CrossRefGoogle Scholar
- 30.Z. Huang, G. Hao, C. He, H. Yang, L. Xue, X. Qi, X. Peng, J. Zhong, J. Appl. Phys. 114, 083706 (2013) ADSCrossRefGoogle Scholar
- 31.P. Rastogi, S. Kumar, S. Bhowmick, A. Agarwal, Y.S. Chauhan, in 2014 IEEE 2nd International Conference on Emerging Electronics (ICEE) 2014, pp. 1–5 Google Scholar
- 32.V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phys. Chem. Chem. Phys. 17, 992 (2015) CrossRefGoogle Scholar
- 33.P. Rastogi, S. Kumar, S. Bhowmick, A. Agarwal, Y.S. Chauhan, IETE J. Res. 63, 205 (2017) CrossRefGoogle Scholar
- 34.S. Le, Z. Tianshou, X. Ao, X. Jianbo, Science 61, 1138 (2016) Google Scholar
- 35.X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao, S.A. Yang, Nano Scale 8, 15340 (2016) Google Scholar
- 36.J. Li, H. Lv, W. Lu, D. Shao, R. Xiao, Y. Sun, Phys. Lett. A 380, 3928 (2016) ADSCrossRefGoogle Scholar
- 37.J. Yuan, N. Yu, K. Xue, X. Miao, RSC Adv. 7, 8654 (2017) CrossRefGoogle Scholar
- 38.P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009) CrossRefGoogle Scholar
- 39.J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
- 40.W.A. Saidi, Cryst. Growth Des. 15, 3190 (2015) CrossRefGoogle Scholar
- 41.C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New Jersey, United States, 2005) Google Scholar
- 42.R.S. Mulliken, J. Chem. Phys. 23, 1841 (1955) ADSCrossRefGoogle Scholar
- 43.C. Cao, M. Wu, J. Jiang, H.P. Cheng, Phys. Rev. B 81, 205424 (2010) ADSCrossRefGoogle Scholar
- 44.X.D. Li, Y.M. Fang, S.Q. Wu, Z.Z. Zhu, AIP Adv. 5, 057143 (2015) ADSCrossRefGoogle Scholar