Advertisement

Grasping asymmetric information in price impacts

  • Shanshan Wang
  • Sebastian Neusüß
  • Thomas Guhr
Regular Article

Abstract

The price impact for a single trade is estimated by the immediate response on an event time scale, i.e., the immediate change of midpoint prices before and after a trade. We work out the price impacts across a correlated financial market. We quantify the asymmetries of the distributions and of the market structures of cross-impacts, and find that the impacts across the market are asymmetric and non-random. Using spectral statistics and Shannon entropy, we visualize the asymmetric information in price impacts. Also, we introduce an entropy of impacts to estimate the randomness between stocks. We show that the useful information is encoded in the impacts corresponding to small entropy. The stocks with large number of trades are more likely to impact others, while the less traded stocks have higher probability to be impacted by others.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    B. Mandelbrot, J. Bus. 36, 394 (1963) CrossRefGoogle Scholar
  2. 2.
    R. Cont, Quant. Finance 1, 223 (2001) CrossRefGoogle Scholar
  3. 3.
    T.A. Schmitt, R. Schäfer, M.C. Münnix, T. Guhr, Europhys. Lett. 100, 38005 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    J.P. Bouchaud, Y. Gefen, M. Potters, M. Wyart, Quant. Finance 4, 176 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    F. Lillo, J.D. Farmer, R.N. Mantegna, Nature 421, 129 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    S. Wang, R. Schäfer, T. Guhr, Eur. Phys. J. B 89, 105 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    S. Wang, R. Schäfer, T. Guhr, Eur. Phys. J. B 89, 207 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Bouchaud, Price impact, in Encyclopedia of quantita- tive finance (John Wiley & Sons, Hoboken, NJ, 2010) Google Scholar
  10. 10.
    H. Demsetz, Q. J. Econ. 82, 33 (1968) CrossRefGoogle Scholar
  11. 11.
    F. Lillo, S. Mike, J.D. Farmer, Phys. Rev. E 71, 066122 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    R. Almgren, C. Thum, E. Hauptmann, H. Li, Risk 18, 58 (2005) Google Scholar
  13. 13.
    N. Torre, BARRA Market Impact Model Handbook (BARRA Inc., Berkeley, 1997) Google Scholar
  14. 14.
    M. Benzaquen, I. Mastromatteo, Z. Eisler, J.P. Bouchaud, J. Stat. Mech. Theor. Exp. 2017, 023406 (2017) CrossRefGoogle Scholar
  15. 15.
    M. Schneider, F. Lillo, Quant. Finance (2018)  https://doi.org/10.1080/14697688.2018.1467033
  16. 16.
  17. 17.
    I. Mastromatteo, M. Benzaquen, Z. Eisler, J.P. Bouchaud, Risk July 2017 (2017) Google Scholar
  18. 18.
    J. Gatheral, Quant. Finance 10, 749 (2010) MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Gatheral, A. Schied, A. Slynko, Math. Finance 22, 445 (2012) MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Gatheral, A. Schied, Dynamical models of market impact and algorithms for order execution, in Handbook on systemic risk, edited by J.P. Fouque, J.A. Langsam (Cambridge University Press, Cambridge, 2013), pp. 579–599 Google Scholar
  21. 21.
    A.A. Obizhaeva, J. Wang, J. Financ. Mark. 16, 1 (2013) CrossRefGoogle Scholar
  22. 22.
    A. Alfonsi, J.I. Acevedo, Appl. Math. Finance 21, 201 (2014) MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Alfonsi, P. Blanc, Finance Stochastics 20, 183 (2016) MathSciNetCrossRefGoogle Scholar
  24. 24.
    S.  Wang, T. Guhr, https://doi.org/arXiv:1609.04890 (2016)
  25. 25.
    C.E. Shannon, Bell Syst. Tech. J. 27, 623 (1948) CrossRefGoogle Scholar
  26. 26.
    TAQ 3 Use’s Guide, New York Stock Exchange, Inc., 1. 1. 9 edn. (2008) Google Scholar
  27. 27.
  28. 28.
    J. Nolan, Stable Distributions: Models for heavy-tailed data (Birkhauser, New York, 2003) Google Scholar
  29. 29.
    L. Laloux, P. Cizeau, J.P. Bouchaud, M. Potters, Phys. Rev. Lett. 83, 1467 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    L. Laloux, P. Cizeau, M. Potters, J.P. Bouchaud, Int. J. Theoretical Appl. Finance 3, 391 (2000) CrossRefGoogle Scholar
  31. 31.
    V. Plerou, P. Gopikrishnan, B. Rosenow, L.N. Amaral, H.E. Stanley, Physica A 287, 374 (2000) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, T. Guhr, H.E. Stanley, Phys. Rev. E 65, 066126 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    M. Potters, J.P. Bouchaud, L. Laloux, Acta Physica Polonica B 36, 2767 (2005) ADSMathSciNetGoogle Scholar
  34. 34.
    J.P.  Bouchaud, M. Potters, https://doi.org/arXiv:0910.1205 (2009)
  35. 35.
    V.A. Marčenko, L.A. Pastur, Math. USSR-Sb. 1, 457 (1967) CrossRefGoogle Scholar
  36. 36.
    J.W. Silverstein, Z. Bai, J. Multivariate Anal. 54, 175 (1995) MathSciNetCrossRefGoogle Scholar
  37. 37.
    A.M. Sengupta, P.P. Mitra, Phys. Rev. E 60, 3389 (1999) ADSCrossRefGoogle Scholar
  38. 38.
    H. Sommers, A. Crisanti, H. Sompolinsky, Y. Stein, Phys. Rev. Lett. 60, 1895 (1988) ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    E.N. Suparno, S.K. Jo, K. Lim, A. Purqon, S.Y. Kim, J. Phys.:Conf. Ser. 739, 012037 (2016) Google Scholar
  40. 40.
    E.F. Fama, J. Financ. 25, 383 (1970) CrossRefGoogle Scholar
  41. 41.
    S.J. Grossman, J.E. Stiglitz, Am. Econ. Rev. 70, 393 (1980) Google Scholar
  42. 42.
    A.W. Lo, J. Portfolio Manage. 30, 15 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shanshan Wang
    • 1
  • Sebastian Neusüß
    • 2
  • Thomas Guhr
    • 1
  1. 1.Fakultät für Physik, Universität Duisburg–EssenDuisburgGermany
  2. 2.Deutsche Börse AGFrankfurtGermany

Personalised recommendations