Advertisement

Phase transitions and magnetoelectric coupling in BiFe1−xZn x O3 multiferroics

  • Abdulkarim A. Amirov
  • Yogesh A. Chaudhari
  • Subhash T. Bendre
  • Ksenia A. Chichay
  • Valeria V. Rodionova
  • Dibir M. Yusupov
  • Zairbek M. Omarov
Regular Article
  • 70 Downloads

Abstract

Multiferroic BiFe1−xZn x O3 ceramics were prepared by solution combustion method. Their structure, magnetoelectric, dielectric, magnetic, thermal characteristics were studied. The magnetic M(T) and heat capacity C p (T) measurements demonstrate an antiferromagnetic to paramagnetic phase transition (T N ) around 635 K. The anomaly on the temperature dependence of the dielectric constant near T N was observed, which could be induced by the magnetoelectric coupling between electric and magnetic ordering. The magnetoelectric behavior was also confirmed by the linear relation between Δε and M2, which is in the agreement of the Ginzburg-Landau theory for the second-order phase transition.

Keywords

Solid State and Materials 

References

  1. 1.
    A.K. Zvezdin, A.P. Pyatakov, Sov. Phys. Usp. 47, 8 (2004) Google Scholar
  2. 2.
    A.G. Zhdanov et al., Sov. Phys. Solid State 48, 83 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    A.M. Kadomtseva et al., Sov. Phys. JETP 79, 705 (2004) Google Scholar
  4. 4.
    D. Lee et al., Appl. Phys. Lett. 86, 222903 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    J. Cheng et al., Phys. Rev. B 72, 104434 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    J. Li et al., Appl. Phys. Lett. 84, 5261 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    V.A. Murashov et al., Kristallografiya 35, 912 (1990) Google Scholar
  8. 8.
    V.A. Murashov et al., Fiz. Tverd. Tela 32, 2156 (1990) Google Scholar
  9. 9.
    Z.V. Gabbasova et al., Phys. Lett. A 158, 491 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    T. Zhao et al., Nat. Mater. 5, 823 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    M. Kumar, K.L. Yadav, Appl. Phys. Lett. 91, 242901 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Amirov et al., Phys. Solid State 51, 1189 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    I.A. Verbenko, Bull. Russ. Acad. Sci. Phys. 74, 1141 (2010) CrossRefGoogle Scholar
  14. 14.
    K.S. Nalwa, A. Gard, A. Upadhyaya, Matter. Lett. 62, 878 (2008) CrossRefGoogle Scholar
  15. 15.
    V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, A.L. Kholkin, M.A. Sa, Y.G. Pogorelov, Appl. Phys. Lett. 90, 242901 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    Q.H. Jiang, J. Ma, Y.H. Lin, C.W. Nan, Z. Shi, Z.J. Shen, Appl. Phys. Lett. 91, 0229141 (2007) Google Scholar
  17. 17.
    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    L.H. Yin, W.H. Song, X.L. Jiao, W.B. Wu, X.B. Xu, Z.R. Yang, J.M. Dai, R.L. Zhang, Y.P. Sun, J. Phys.: Appl. Phys. 42, 2054021 (2009) Google Scholar
  19. 19.
    Q. Xu, H. Zai, D. Wu, Y.K. Tang, M.X. Xu, J. Alloys Compd. 485, 13 (2009) CrossRefGoogle Scholar
  20. 20.
    Y.A. Chaudhari, A. Singh, E.M. Abuassaj, R. Chatterjee, S.T. Bendre, J. Alloys Compd. 518, 51 (2012) CrossRefGoogle Scholar
  21. 21.
    T. Gholam, A. Ablat, M. Mamat, R. Wu, A. Aimidula, M. Ali Bake, L. Zheng, J. Wang, H. Qian, R. Wu, K. Ibrahim, J. Alloys Compd. 710, 843 (2017) CrossRefGoogle Scholar
  22. 22.
    J.M. Park, F. Gotoda, S. Nakashima, T. Kanashima, M. Okuyama, Curr. Appl. Phys. 11, 119 (2011) CrossRefGoogle Scholar
  23. 23.
    J. Liu, H. Deng, X. Zhai, T. Lin, X. Meng, Y. Zhang, W. Zhou, P. Yang, J. Chu, Mater. Lett. 133, 49 (2014) CrossRefGoogle Scholar
  24. 24.
    Y. Sheng, X. Yuan, Q. Xu, J. Supercond. Novel Magn. 26, 2785 (2013) CrossRefGoogle Scholar
  25. 25.
    A.A. Amirov, I.K. Kamilov, A.B. Batdalov, I.A. Verbenko, O.N. Razumovskaya, L. Reznichenko, L.A. Shilkina, Tech. Phys. Lett. 34, 760 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    A.T. Kozakov, A.G. Kochur, V.I. Torgashev, K.A. Googlev, S.P. Kubrin, V.G. Trotsenko, A.A. Bush, A.V. Nikolskii, J. Alloys Compd. 664, 392 (2016) CrossRefGoogle Scholar
  27. 27.
    A.A. Amirov, I.K. Kamilov, D.M. Yusupov, L.A. Reznichenko, O.N. Razumovskaya, I.A. Verbenko, Phys. Procedia 75, 10 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    P. Thakuria, P.A. Joy, Solid State Commun. 152, 1609 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    Z.J. Huang, Y. Cao, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Phys. Rev. B 56, 2623 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67, 180401 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    G.A. Smolenskii, I.E. Chupis, Ups. Fiz. Nauk 137, 415 (1982) [Sov. Phys. Usp. 25, 475 (1982)] CrossRefGoogle Scholar
  32. 32.
    Z.H. Sun, B.L. Cheng, S. Dai, L.Z. Cao, Y.L. Zhou, K.J. Jin, Z.H. Chen, G.Z. Yang, J. Phys. D: Appl. Phys. 39, 2481 (2006) CrossRefGoogle Scholar
  33. 33.
    Y. Yang, J-M. Liu, H.B. Huang, W.Q. Zou, P. Bao, Z.G. Liu, Phys. Rev. B 70, 132101 (2004) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Abdulkarim A. Amirov
    • 1
    • 2
  • Yogesh A. Chaudhari
    • 3
  • Subhash T. Bendre
    • 3
  • Ksenia A. Chichay
    • 1
  • Valeria V. Rodionova
    • 1
  • Dibir M. Yusupov
    • 2
  • Zairbek M. Omarov
    • 2
  1. 1.Center for Functionalized Magnetic Materials (FunMagMa) & Institute of Physics Mathematics and Informational Technologies Immanuel Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Amirkhanov Institute of Physics Daghestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia
  3. 3.Department of PhysicsSchool of Physical Sciences, North Maharashtra UniversityMaharashtraIndia

Personalised recommendations