Advertisement

Controllable transition between optical bistability and multistability in graphene/dielectric/graphene structure

  • Liang Guo
  • Yifan He
  • Yihang Chen
  • Chengping Yin
Regular Article

Abstract

We theoretically investigated the controllable transition between optical bistability and multistability in graphene/dielectric/graphene structure for TE and TM polarizations. We show such a transition strongly depends on the Fermi energy of graphene, and thus, it can be controlled by adjusting the gate voltage applied on the graphene. In addition, we also show that the transition can be tuned by changing the thickness and permittivity of the dielectric layer, or by varying the wavelength and the incident angle of the input light. Furthermore, three S-type curves appear in our studied structure, which result in quadristability. Our results may find potential applications in optoelectronic devices.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    S. Tang, B. Zhu, S. Xiao, T. Shen, L. Zhou, Opt. Lett. 39, 3212 (2014) ADSCrossRefGoogle Scholar
  2. 2.
    S.H. Asadpour, H. Rahimpour Solermani, Laser Phys. Lett. 13, 015204 (2016) ADSCrossRefGoogle Scholar
  3. 3.
    H.R. Hamedi, S.H. Asadpour, J. Appl. Phys. 117, 183101 (2015) ADSCrossRefGoogle Scholar
  4. 4.
    Z. Wang, B. Yu, J. Appl. Phys. 113, 113101 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Xiang, X. Dai, J. Guo, S. Wen, D. Tang, Appl. Phys. Lett. 104, 051108 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    L. Jiang, J. Guo, L. Wu, X. Dai, Y. Xiang, Opt. Express 23, 31181 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    H.P. Adl, H. Hajian, P. Tajalli, H. Tajallie, Optik 127, 1190 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    F.Y. Wang, G.X. LI, H.L. Tam, K.W. Cheah, S.N. Zhu, Appl. Phys. Lett. 92, 211109 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Shen, G.P. Wang, Opt. Express 16, 8421 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    V.R. Tuz, S.L. Prosvirnin, L.A. Kochetova, Phys. Rev. B 82, 233402 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    N.M.R. Peres et al., Phys. Rev. B 90, 125425 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    N.M. Litchinitser, I.R. Gabittov, A.I. Maimistov, Phys. Rev. Lett. 99, 113902 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    A. Joshi, M. Xiao, Phys. Rev. Lett. 91, 143904 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    J. Sheng, U. Khadka, M. Xiao, Phys. Rev. Lett. 109, 223906 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    G. Xu, T. Pan, T. Zang, J. Sun, Appl. Phys. 42, 045303 (2009) Google Scholar
  16. 16.
    S.H. Asadpour et al., Chin. Phys. B 25, 054208 (2016) CrossRefGoogle Scholar
  17. 17.
    X. Dai, L. Jiang, Y. Xiang, Opt. Express 23, 6497 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    E. Lotfi et al., Appl. Phys. A 10, 1007 (2011) Google Scholar
  19. 19.
    Gh. Solookinejad, Eur Phys J. Plus 131, 126 (2016) CrossRefGoogle Scholar
  20. 20.
    W. Harshawardhan, G.S. Agarwal, Phys. Rev. A 53, 1812 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    F.H.L. Koppens, D.E. Chang, F.J. Garca de Abajo, Nano Lett. 11, 3370 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    Q.L. Bao, H. Zhang, B. Wang, Z.H. Ni, C.H.Y.X. Lim, Y. Wang, D.Y. Tang, K.P. Loh, Nat. Photonics 5, 411 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    N.M.R. Peres, Y.V. Bludov, J.E. Santos, A. Jauho, M.I. Vasilevskiy, Phys. Rev. B 90, 125425 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    S.A. Mikhailov, K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008) ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liang Guo
    • 1
    • 2
  • Yifan He
    • 1
    • 2
  • Yihang Chen
    • 1
    • 2
  • Chengping Yin
    • 1
    • 2
  1. 1.Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal UniversityGuangzhouP.R. China
  2. 2.School of Physics and Telecommunication Engineering, South China Normal UniversityGuangzhouP.R. China

Personalised recommendations