Thermoelectric efficiency enhanced in a quantum dot with polarization leads, spin-flip and external magnetic field

  • Hui Yao
  • Peng-Bin Niu
  • Chao Zhang
  • Wei-Ping Xu
  • Zhi-Jian Li
  • Yi-Hang Nie
Regular Article
  • 40 Downloads

Abstract

We theoretically study the thermoelectric transport properties in a quantum dot system with two ferromagnetic leads, the spin-flip scattering and the external magnetic field. The results show that the spin polarization of the leads strongly influences thermoelectric coefficients of the device. For the parallel configuration the peak of figure of merit increases with the increase of polarization strength and non-collinear configuration trends to destroy the improvement of figure of merit induced by lead polarization. While the modulation of the spin-flip scattering on the figure of merit is effective only in the absence of external magnetic field or small magnetic field. In terms of improving the thermoelectric efficiency, the external magnetic field plays a more important role than spin-flip scattering. The thermoelectric efficiency can be significantly enhanced by the magnetic field for a given spin-flip scattering strength.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    B.L. Gallagher et al., Phys. Rev. Lett. 64, 2058 (1990) ADSCrossRefGoogle Scholar
  2. 2.
    Y. Dubi, M.D. Ventra, Rev. Mod. Phys. 83, 131 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    R. Świrkowicz, M. Wierzbicki, J. Barnaś, Phys. Rev. B 80, 195409 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    Q. Wang, H.Q. Xie, Y.H. Nie, W. Ren, Phys. Rev. B 87, 075102 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    Z.Z. Zhang, L. Jiang, R.Q. Wang, D.Y. Xing, Appl. Phys. Lett. 97, 241201 (2010) Google Scholar
  6. 6.
    R.Q. Wang, L. Shen, R. Shen, B.G. Wang, D.Y. Xing, Phys. Rev. Lett. 105, 057202 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    P.B. Niu, Y.Y. Zhang, Q. Wang, Y.H. Nie, Phys. Lett. A 376, 1481 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    C. Zhang, H. Yao, Y.H. Nie, J.Q. Liang, AIP Adv. 6, 115202 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    L.W. Molenkamp, H.H. Van, C.W.J. Beenakker, R. Eppenga, C.T. Foxon, Phys. Rev. Lett. 65, 1052 (1990) ADSCrossRefGoogle Scholar
  10. 10.
    L.W. Molenkamp, T. Gravier, H.H. Van, O.J. Buijk, M.A. Mabesoone, C.T. Foxon, Phys. Rev. Lett. 68, 3765 (1992) ADSCrossRefGoogle Scholar
  11. 11.
    P. Reddy, S.Y. Jiang, R.A. Segalman, A. Majumdar, Science 315, 1568 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Han, W.J. Gong, H.M. Wang, An. Du, J. Appl. Phys. 112, 123701 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    X. Yang, J. Zheng, C.L. Li, Y. Guo, J. Phys.: Condens. Matter 27, 075302 (2015) ADSGoogle Scholar
  14. 14.
    Z.L. He, J.Y. Bai, L. Cui, Q. Li, G.H. Han, B.L. Zhang, Physica B 477, 64 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    L Xu, Z.J. Li, H.Y. Hou, P.B. Niu, Y.H. Nie, J. Phys. D: Appl. Phys. 49, 405305 (2016) CrossRefGoogle Scholar
  16. 16.
    Y.M. Blanter, C. Bruder, R. Fazio, H. Schoeller, Phys. Rev. B 55, 4069 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    B. Kubala, J. König, Phys. Rev. B 73, 195316 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    X. Zianni, Phys. Rev. B 75, 045344 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    Z.Y. Zhang, J. Phys.: Condens. Matter 19, 086214 (2007) ADSGoogle Scholar
  20. 20.
    M. Wierzbicki, R. Swirkowicz, Phys. Rev. B 84, 075410 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    P. Trocha, J. Barnaś, Phys. Rev. B 85, 085408 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    C.C. Chen, D.M.T. Kuo, Y.C. Chang, Phys. Chem. Chem. Phys. 17, 19386 (2015) CrossRefGoogle Scholar
  23. 23.
    W.P. Xu, Y.Y. Zhang, Q. Wang, Z.J. Li, Y.H. Nie, Phys. Lett. A 380, 958 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    Z.G. Chen, J. Wang, B.G. Wang, D.Y. Xing, Phys. Lett. A 334, 436 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    Q. Chen, L.L. Zhao, Commun. Theor. Phys. 62, 417 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    J. Liu, J.Chen, S. Wang, Phys. Scr. 89, 085701 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    F. Jiang, H. Xie, Y.H. Yan, Phys. Lett. A 378, 1854 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    P. Zhang, Q.K. Xue, Y.P. Wang, X.C. Xie, Phys. Rev. Lett. 89, 286803 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    H. Zhang, G.M. Zhang, L. Yu, J. Phys.: Condens. Matter 21, 155501 (2009) ADSGoogle Scholar
  30. 30.
    P.B. Niu, Y.L. Shi, Z. Sun, Y.H. Nie, H.G. Luo, J. Phys. D:Appl. Phys. 49, 045002 (2016) ADSCrossRefGoogle Scholar
  31. 31.
    P. Sun et al., Nat. Commun. 6, 7475 (2015) CrossRefGoogle Scholar
  32. 32.
    J. Peng, B.G. Wang, D.Y. Xing, Phys. Rev. B 63, 245326 (2003) Google Scholar
  33. 33.
    X.F. Cao, Y.M. Shi, X.L. Song, S.P. Zhou, H. Chen, Phys. Rev. B 70, 235341 (2004) ADSCrossRefGoogle Scholar
  34. 34.
    H. Pan, T.H. Lin, J. Phys.: Condens. Matter 17, 5207 (2005) ADSGoogle Scholar
  35. 35.
    Y.M. Shi, S.P. Zhuo, X.F. Cao, H. Huang, H. Chen, Europhys. Lett. 73, 941 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    Y.S. Liu, X.F. Yang, X.H. Fan, Y.J. Xia, Phys. Lett. A 372, (2008) Google Scholar
  37. 37.
    W. Rudzinski, J. Barnas, R. Swirkowicz, M. Wilczynski, Phys. Rev. B 71, 205307 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    K.R. Wald et al., Phys. Rev. Lett. 73, 1011 (1994) ADSCrossRefGoogle Scholar
  39. 39.
    D.M.T. Kuo, Y.C. Chang, Phys. Rev. B 81, 205321 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    C.D. Mahan, Many-particle physics (Plenum, New York, 2000) Google Scholar
  41. 41.
    T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002) ADSCrossRefGoogle Scholar
  42. 42.
    D. Nozaki, H. Sevincli, W. Li, R. Gutierrez, G. Cuniberti, Phys. Rev. B 81, 235406 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    M. Tsaousidou, G.P. Triberis, J. Phys.: Condens. Matter 22, 355304 (2010) Google Scholar
  44. 44.
    D.M.T. Kuo, C.C. Chen, Y.C. Chang, Phys. Rev. B 95, 075432 (2017) ADSCrossRefGoogle Scholar
  45. 45.
    R. Świrkowicz, M. Wilczyński, M. Wawrzyniak, J. Barnaś, Phys. Rev. B 73, 193312 (2006) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hui Yao
    • 1
  • Peng-Bin Niu
    • 2
  • Chao Zhang
    • 1
  • Wei-Ping Xu
    • 3
  • Zhi-Jian Li
    • 1
  • Yi-Hang Nie
    • 1
  1. 1.Institute of Theoretical Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi UniversityTaiyuanP.R. China
  2. 2.Institute of Solid State Physics, Shanxi Datong UniversityDatongP.R. China
  3. 3.School of Applied Science, Taiyuan University of Science and TechnologyTaiyuanP.R. China

Personalised recommendations