Advertisement

Insight into destabilization mechanism of Mg-based hydrides interstitially co-doped with nonmetals: a DFT study

  • Zhen Wu
  • Luying Zhu
  • Fusheng Yang
  • Zaoxiao Zhang
  • Serge N. Nyamsi
Regular Article

Abstract

Mg-based metal hydride is one of the most promising materials for hydrogen energy storage. However, the high thermal stability due to strong bonding effects between the atoms limits its practical application. In order to reduce the thermal stability, a method of doping double nonmetals into Mg-based system was proposed in this study. The density functional theory (DFT) calculation results showed that the thermal stabilities of both the B-N co-doped Mg-based alloy and its hydride are reduced compared with pure Mg-based system. The relative formation enthalpies of the alloy and its hydride are 0.323 and 0.595 eV atom−1, respectively. The values are much higher than those for either singly B- or N-doped Mg-based system. The more significant destabilization by doping double nonmetal elements than single element is mainly attributed to a dual effect in weakening Mg–Ni/NiH4 bonds, caused by criss-cross interactions between B–Ni and N–Mg bonds.

Keywords

Solid State and Materials 

References

  1. 1.
    A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nat. Mater. 4, 366 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    C. Pak, S. Kang, Y.S. Choi, H. Chang, J. Mater. Res. 25, 2010 2063 ADSCrossRefGoogle Scholar
  3. 3.
    M. Jasiński, M. Dors, J. Mizeraczyk, Eur. Phys. J. D 54, 179 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Nat. Rev. Mater. 1, 16059 (2016) ADSCrossRefGoogle Scholar
  5. 5.
    Chris G. Van de Walle, A. Peles, A. Janotti, G.B. Wilson-Short, Physica B 404, 793 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    Sh. Varshoy, B. Khoshnevisan, M. Mohammadi, M. Behpour, Physica B 526, 143 (2017) ADSCrossRefGoogle Scholar
  7. 7.
    E.S. Cho, A.M. Ruminski, S. Aloni, Y.S. Liu, J.H. Guo, J.J. Urban, Nat. Commun. 7, 10804 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    Z. Wu, F. Yang, Z. Zhang, Z. Bao, Appl. Energy 130, 712 (2014) CrossRefGoogle Scholar
  9. 9.
    C. Nützenadel, A. Züttel, D. Chartouni, G. Schmid, L. Schlapbach, Eur. Phys. J. D 8, 245 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    P.D. Rango, P. Marty, D. Fruchart, Appl. Phys. A 122, 1 (2016) CrossRefGoogle Scholar
  11. 11.
    L. Schlapbach, A. Züttel, Nature 414, 353 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Chen, H. Huang, J. Fu, Q. Guo, F. Pan, S. Deng, J. Li, G. Zhao, Co, J. Mater. Res. 24, 1311 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Tan, Y. Zhu, J. Yuan, L. Li, J. Mater. Res. 30, 1 (2015) CrossRefGoogle Scholar
  14. 14.
    Y. Jia, C. Sun, L. Cheng, M.A. Wahab, J. Cui, J. Zou, M. Zhu, X. Yao, Phys. Chem. Chem. Phys. 15, 5814 (2013) CrossRefGoogle Scholar
  15. 15.
    Y. Jia, C. Sun, S. Shen, J. Zou, S.S. Mao, X. Yao, Renew. Sust. Energy Rev. 44, 289 (2015) CrossRefGoogle Scholar
  16. 16.
    R. Trivedi, D. Bandyopadhyay, Int. J. Hydrogen Energy 40, 12727 (2015) CrossRefGoogle Scholar
  17. 17.
    R. Trivedi, D. Bandyopadhyay, Int. J. Hydrogen Energy 41, 20113 (2016) CrossRefGoogle Scholar
  18. 18.
    Y. Jia, C. Sun, Y. Peng, W. Fang, X. Yan, D. Yang, J. Zou, S.S. Mao, X. Yao, J. Mater. Chem. A 3, 8294 (2015) CrossRefGoogle Scholar
  19. 19.
    S.W. Tang, L.L. Sun, J.D. Feng, H. Sun, R.S. Wang, Y.F. Chang, Eur. Phys. J. D 53, 197 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    L. Guo, S. Li, X. Zhang, R. Zhang, J. Guo, Eur. Phys. J. D 67, 1 (2013) CrossRefGoogle Scholar
  21. 21.
    Y. Zeng, K. Fan, X. Li, B. Xu, X. Gao, L. Meng, Int. J. Hydrogen Energy 35, 10349 (2010) CrossRefGoogle Scholar
  22. 22.
    L.W. Huang, O. Elkedim, R. Hamzaoui, J. Alloys Compd. 509, S328 (2011) CrossRefGoogle Scholar
  23. 23.
    L.W. Huang, O. Elkedim, M. Nowak, R. Chassagnon, M. Jurczyk, Int. J. Hydrogen Energy 37, 14248 (2012) CrossRefGoogle Scholar
  24. 24.
    D. Vyas, P. Jain, J. Khan, V. Kulshrestha, A. Jain, I.P. Jain, Int. J. Hydrogen Energy 37, 3755 (2012) CrossRefGoogle Scholar
  25. 25.
    D. Vyas, P. Jain, G. Agarwal, A. Jain, I.P. Jain, Int. J. Hydrogen Energy 37, 16013 (2012) CrossRefGoogle Scholar
  26. 26.
    J. Jiang, S. Zhang, S. Huang, P. Wang, H. Tian, Comput. Mater. Sci. 74, 55 (2013) CrossRefGoogle Scholar
  27. 27.
    H. Ding, S. Zhang, Y. Zhang, S. Huang, P. Wang, H. Tian, Int. J. Hydrogen Energy 37, 6700 (2012) CrossRefGoogle Scholar
  28. 28.
    Z. Wu, L.Y. Zhu, F.S. Yang, Z. Jiang, Z.X. Zhang, Int. J. Hydrogen Energy 41, 18550 (2016) CrossRefGoogle Scholar
  29. 29.
    M. Bhihi, M. El Khatabi, M. Lakhal, S. Naji, H. Labrim, A. Benyoussef, A. El Kenz, M. Loulidi, Int. J. Hydrogen Energy 40, 8356 (2015) CrossRefGoogle Scholar
  30. 30.
    M. Abdellaoui, M. Lakhal, M. Bhihi, M. El Khatabi, A. Benyoussef, A. El Kenz, M. Loulidi, Int. J. Hydrogen Energy 41, 20908 (2015) CrossRefGoogle Scholar
  31. 31.
    L.T. Wei, X.Z. Pan, D.H. Wu, H.C. Wang, L. Shao, J. Zheng, B.Y. Tang, Comput. Mater. Sci. 103, 45 (2015) CrossRefGoogle Scholar
  32. 32.
    M.V. Simičić, M. Zdujić, R. Dimitrijević, Lj. Nikolić-Bujanović, N.H. Popović, J. Power Sources 158, 730 (2006) ADSCrossRefGoogle Scholar
  33. 33.
    P. Zolliker, K. Yvon, J.D. Jorgensen, F.J. Rotella, Inorg. Chem. 25, 3590 (1986) CrossRefGoogle Scholar
  34. 34.
    S.F. Matar, Prog. Solid State Chem. 38, 1 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    Q.X. Cao, T.M. Lei, Y.X. Huang, Introduction to solid state physics, 3rd edn. (Xidian University Press, Xi’an, China, 2008) Google Scholar
  36. 36.
    S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, R. Schulz, J. Alloys Compd. 307, 226 (2000) CrossRefGoogle Scholar
  37. 37.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Mater. 14, 2717 (2002) ADSCrossRefGoogle Scholar
  38. 38.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990) ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) ADSCrossRefGoogle Scholar
  40. 40.
    J.F. Herbst, L.G. Hector, Phys. Rev. B 79, 155113 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    P.G. Karamertzanis, S.L. Price, J. Chem. Theory Comput. 2, 1184 (2006) CrossRefGoogle Scholar
  42. 42.
    J. Zhang, Y.N. Huang, P. Peng, C. Mao, Y.M. Shao, D.W. Zhou, Int. J. Hydrogen Energy 36, 5375 (2011) CrossRefGoogle Scholar
  43. 43.
    Y.Y. Li, G.L. Sun, Y.M. Mi, Am. J. Anal. Chem. 7, 67 (2016) CrossRefGoogle Scholar
  44. 44.
    H. Wang, H.J. Lin, W.T. Cai, L.Z. Ouyang, M. Zhu, J. Alloys Compd. 658, 280 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhen Wu
    • 1
  • Luying Zhu
    • 1
  • Fusheng Yang
    • 1
  • Zaoxiao Zhang
    • 1
    • 2
  • Serge N. Nyamsi
    • 3
  1. 1.School of Chemical Engineering and Technology, Xi’an Jiaotong UniversityXi’anP.R. China
  2. 2.State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong UniversityXi’anP.R. China
  3. 3.HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry (SAIAMC), University of the Western CapeCape TownSouth Africa

Personalised recommendations