Tunability of temperature-dependent absorption in a graphene-based hybrid nanostructure cavity
Abstract
Enhanced absorption is obtained in a hybrid nanostructure composed of graphene and one-dimensional photonic crystal as a cavity in the visible wavelength range thanks to the localized electric field around the defect layers. The temperature-induced wavelength shift is revealed in the absorption spectra in which the peak wavelength is red-shifted by increasing the temperature. This temperature dependence comes from the thermal expansion and thermo-optical effects in the constituent layers of the structure. Moreover, the absorption peaks can be adjusted by varying the incident angle. The results show that absorption is sensitive to TE/TM polarization and its peak values for the TE mode are higher than the TM case. Also, the peak wavelength is blue-shifted by increasing the incident angle for both polarizations. Finally, the possibility of tuning the absorption using the electro-optical response of graphene sheets is discussed in detail. We believe our study may be beneficial for designing tunable graphene-based temperature-sensitive absorbers.
Keywords
Solid State and MaterialsReferences
- 1.J. Nilsson, A.C. Neto, F. Guinea, N. Peres, Phys. Rev. Lett. 97, 266801 (2006) ADSCrossRefGoogle Scholar
- 2.L. Falkovsky, S. Pershoguba, Phys. Rev. B 76, 153410 (2007) ADSCrossRefGoogle Scholar
- 3.A.C. Neto, F. Guinea, N. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
- 4.F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Nat. Photonics 4, 611 (2010) ADSCrossRefGoogle Scholar
- 5.K.F. Mak, M.Y. Sfeir, J.A. Misewich, T.F. Heinz, Proc. Natl. Acad. Sci. USA 107, 14999 (2010) ADSCrossRefGoogle Scholar
- 6.R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, A. Geim, Science 320, 1308 (2008) ADSCrossRefGoogle Scholar
- 7.X. Gan, R.J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Nat. Photonics 7, 883 (2013) ADSCrossRefGoogle Scholar
- 8.P. Gowda, T. Sakorikar, S.K. Reddy, D.B. Ferry, A. Misra, ACS Appl. Mater. Interfaces 6, 7485 (2014) CrossRefGoogle Scholar
- 9.Z. Sun, T. Hasan, A. Ferrari, Physica E 44, 1082 (2012) ADSCrossRefGoogle Scholar
- 10.M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, Nature 474, 64 (2011) ADSCrossRefGoogle Scholar
- 11.O.L. Muskens, J.G. Rivas, R.E. Algra, E.P. Bakkers, A. Lagendijk, Nano Lett. 8, 2638 (2008) ADSCrossRefGoogle Scholar
- 12.H. Fang, X. Li, S. Song, Y. Xu, J. Zhu, Nanotechnology 19, 255703 (2008) ADSCrossRefGoogle Scholar
- 13.V. Popov, T.Y. Bagaeva, T. Otsuji, V. Ryzhii, Phys. Rev. B 81, 073404 (2010) ADSCrossRefGoogle Scholar
- 14.T. Echtermeyer, L. Britnell, P. Jasnos, A. Lombardo, R. Gorbachev, A. Grigorenko, A. Geim, A. Ferrari, K. Novoselov, Nat. Commun. 2, 458 (2011) ADSCrossRefGoogle Scholar
- 15.Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, W. Yu, Adv. Opt. Mater. 1, 43 (2013) CrossRefGoogle Scholar
- 16.F. Ramos-Mendieta, J. Hernández-López, M. Palomino-Ovando, AIP Adv. 4, 067125 (2014) ADSCrossRefGoogle Scholar
- 17.J. Zhu, Q.H. Liu, T. Lin, Nanoscale 5, 7785 (2013) ADSCrossRefGoogle Scholar
- 18.J.R. Piper, S. Fan, ACS Photonics 1, 347 (2014) CrossRefGoogle Scholar
- 19.M. Grande et al., Opt. Express 22, 31511 (2014) ADSCrossRefGoogle Scholar
- 20.X. Jia, X. Wang, Q. Meng, C. Yuan, Z. Zhou, Opt. Commun. 372, 172 (2016) ADSCrossRefGoogle Scholar
- 21.J.T. Liu, N.H. Liu, J. Li, X.J. Li, J.H. Huang, Appl. Phys. Lett. 101, 052104 (2012) ADSCrossRefGoogle Scholar
- 22.N.M. Peres, Y.V. Bludov, Europhys. Lett. 101, 58002 (2013) ADSCrossRefGoogle Scholar
- 23.R. Miloua, Z. Kebbab, F. Chiker, M. Khadraoui, K. Sahraoui, A. Bouzidi, M. Medles, C. Mathieu, N. Benramdane, Opt. Commun. 330, 135 (2014) ADSCrossRefGoogle Scholar
- 24.M. Grande, M. Vincenti, T. Stomeo, D. De Ceglia, V. Petruzzelli, M. De Vittorio, M. Scalora, A. D’Orazio, IEEE Photonics J. 6, 1 (2014) CrossRefGoogle Scholar
- 25.X.H. Deng, J.T. Liu, J. Yuan, T.B. Wang, N.H. Liu, Opt. Express 22, 30177 (2014) ADSCrossRefGoogle Scholar
- 26.A. Ardakani, Eur. Phys. J. B 88, 166 (2015) ADSCrossRefGoogle Scholar
- 27.A. Khaleque, H.T. Hattori, Appl. Opt. 55, 2936 (2016) ADSCrossRefGoogle Scholar
- 28.X.K. Kong, X.Z. Shi, J.J. Mo, Y.T. Fang, X.L. Chen, S.B. Liu, Opt. Commun. 383, 391 (2017) ADSCrossRefGoogle Scholar
- 29.A. Rashidi, A. Namdar, R. Abdi-Ghaleh, Superlattices Microstruct. 105, 74 (2017) ADSCrossRefGoogle Scholar
- 30.A. Rashidi, A. Namdar, R. Abdi-Ghaleh, Appl. Opt. 56, 5914 (2017) CrossRefGoogle Scholar
- 31.J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: molding the flow of light (Princeton University Press, United States, 2011) Google Scholar
- 32.E.D. Palik, in Handbook of optical constants of solids (Academic Press, United States, 1998), Vol. 3 Google Scholar
- 33.M. Simon, F. Mersch, C. Kuper, S. Mendricks, S. Wevering, J. Imbrock, E. Krätzig, Phys. Status Solidi (a) 159, 559 (1997) ADSCrossRefGoogle Scholar
- 34.T. Stauber, N. Peres, A. Geim, Phys. Rev. B 78, 085432 (2008) ADSCrossRefGoogle Scholar
- 35.P. Williams, A. Rose, K. Lee, D. Conrad, G. Day, P. Hale, Appl. Opt. 35, 3562 (1996) ADSCrossRefGoogle Scholar
- 36.S.P. Singh, K. Pal, A. Tarafder, M. Das, K. Annapurna, B. Karmakar, Bull. Mater. Sci. 33, 33 (2010) CrossRefGoogle Scholar
- 37.Y.H. Chang, Y.Y. Jhu, C.J. Wu, Opt. Commun. 285, 1501 (2012) ADSCrossRefGoogle Scholar
- 38.T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, J. Phys.: Condens. Matter 25, 215301 (2013) ADSGoogle Scholar
- 39.S.R. Entezar, Z. Saleki, A. Madani, Physica B 478, 122 (2015) ADSCrossRefGoogle Scholar
- 40.M. Born, E. Wolf, Principles of optics (Pergamon, Oxford, UK, 1989) Google Scholar
- 41.B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, H.G. Xing, Nat. Commun. 3, 780 (2012) ADSCrossRefGoogle Scholar