Hole pairing and ground state properties of high-T c superconductivity within the ttJV model

  • Krishanu Roy
  • Papiya Pal
  • Subhadip Nath
  • Nanda Kumar Ghosh
Regular Article
  • 31 Downloads

Abstract

The ttJV model, one of the realistic models for studying high-T c cuprates, has been investigated to explore the hole pairing and other ground state properties using exact diagonalization (ED) technique with 2 holes in a small 8-site cluster. The role of next-nearest-neighbor (NNN) hopping and nearest-neighbor (NN) Coulomb repulsion has been considered. It appears that qualitative behavior of the ground state energies of an 8-site and 16- or 18-site cluster is similar. Results show that a small short-ranged antiferromagnetic (AF) correlation exists in the 2 hole case which is favored by large Vt. A superconducting phase emerges at 0 ≤ Vt ≤ 4J. Hole–hole correlation calculation also suggests that the two holes of the pair are either at |ij| = 1 or √2. Negative tt suppresses the possibility of pairing of holes. Though s-wave pairing susceptibility is dominant, pairing correlation length calculation indicates that the long range pairing, which is suitable for superconductivity, is in the d-wave channel. Both s- and d-wave pairing susceptibility gets suppressed by Vt while d-(s-) wave susceptibility gets favored (suppressed) by tt. The charge gap shows a gapped behavior while a spin-gapless region exists at small Vt for finite t t.

Keywords

Solid State and Materials 

References

  1. 1.
    P.W. Anderson, Science 235, 1196 (1987) ADSCrossRefGoogle Scholar
  2. 2.
    F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3709 (1988) ADSGoogle Scholar
  3. 3.
    J. Hubbard, Proc. R. Soc. Lond. Ser. A 276, 238 (1963) ADSCrossRefGoogle Scholar
  4. 4.
    F.C. Zhang et al., Supercond. Sci. Technol. 1, 36 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    T.K. Lee, S.P. Feng, Phys. Rev. B 38, 11809 (1988) ADSCrossRefGoogle Scholar
  6. 6.
    S. Sorella et al., Phys. Rev. Lett. 88, 117002 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    T.K. Lee et al., Phys. Rev. Lett. 89, 279702 (2002) CrossRefGoogle Scholar
  8. 8.
    M. Calandra, S. Sorella, Phys. Rev. B 61, R11894 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    W. Putikka, M. Luchini, T.M. Rice, Phys. Rev. Lett. 68, 538 (1992) ADSCrossRefGoogle Scholar
  10. 10.
    K. Haule, G. Kotliar, Europhys. Lett. 77, 27007 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    A. Himeda, T. Kato, M. Ogata, Phys. Rev. Lett. 88, 117001 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    M. Capello, M. Raczkowski, D. Poilblanc, Phys. Rev. B77, 224502 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    P. Corboz et al., Phys. Rev. Lett. 113, 046402 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Scalapino, Handbook of high temperature superconductivity, edited by J.R. Schrieffer, J.B. Brooks (Springer, New York, 2007) (Chap. 13) Google Scholar
  15. 15.
    R. Raimondi, J.H. Jefferson, L.F. Feiner, Phys. Rev. B 53, 8774 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    K. Tanaka et al., Phys. Rev. 70, 092503 (2004) CrossRefGoogle Scholar
  17. 17.
    H. Yokoyama et al., J. Phys. Soc. Jpn 82, 014070 (2013) Google Scholar
  18. 18.
    O. Parcollet, G. Biroli, G. Kotliar, Phys. Rev. Lett. 92, 226402 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    L. Spanu et al., Phys. Rev. B 77, 024510 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    C.T. Shih et al., Phys. Rev. B 70, 220502 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    E. Pavirini et al Phys. Rev. Lett. 87, 047003 (2001) ADSCrossRefGoogle Scholar
  22. 22.
    C.T. Shih et al., Phys. Rev. Lett. 92, 227002 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    N.S. Mondal, N.K. Ghosh, Pramana-J. Phys. 74, 115 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    N.S. Mondal, N.K. Ghosh, Pramana-J. Phys. 74, 1009 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    S. Nath, N.K. Ghosh, J. Supercond. Nov. Magn. 27, 1347 (2014) CrossRefGoogle Scholar
  26. 26.
    S. Nath, N.K. Ghosh, J. Supercond. Nov. Magn. 27, 2871 (2014) CrossRefGoogle Scholar
  27. 27.
    J.D. Sau, S. Sachdev, Phys. Rev. B 89, 075129 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    A. Allais, J. Bauer, S. Sachdev, Phys. Rev. B 90, 155114 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    R. Eder, J. van den Brink, G.A. Sawatzky, Phys. Rev. B 54, R732 (1996) ADSCrossRefGoogle Scholar
  30. 30.
    K. Rościszewski, A.M. Oleś, J. Phys: Condens. Matter 15, 8363 (2003) ADSGoogle Scholar
  31. 31.
    M. Calandra, J. Merino, R.H. McKenzie, Phys. Rev. B 66, 195102 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    E. Dagotto, J. Riera, Phys. Rev. B 46, 12084 (1992) ADSCrossRefGoogle Scholar
  33. 33.
    M. Bejas, A. Greco, H. Yamase, Phys. Rev B 86, 224509 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    R.B. Laughlin, Phys. Rev. Lett. 112, 017004 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    R.B. Laughlin, Phys. Rev. B 89, 035134 (2014) ADSCrossRefGoogle Scholar
  36. 36.
    Z. Yu et al., Phys. Rev. B 96, 045110 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    P.A. Leeet al., Rev. Mod. Phys. 78, 17 (2006) ADSCrossRefGoogle Scholar
  38. 38.
    W.M. Que, S.P. Bowen, C.D. Williams, J. Phys. C: Solid State Phys. 20, L835 (1989) CrossRefGoogle Scholar
  39. 39.
    J.A. Riera, Phys. Rev. B 40, 833 (1989) ADSCrossRefGoogle Scholar
  40. 40.
    Z. Zhu et al., Sci. Rep. 4, 5419 (2014) CrossRefGoogle Scholar
  41. 41.
    T. Koretsune, M. Ogata, Phys. Rev. B 72, 134513 (2005) ADSCrossRefGoogle Scholar
  42. 42.
    S. Daul, R.M. Noack, Phys. Rev. B 61, 1646 (2000) ADSCrossRefGoogle Scholar
  43. 43.
    Y. Hasegawa, D. Poilblanc, Phys. Rev. B 40, 9035 (1989) ADSCrossRefGoogle Scholar
  44. 44.
    S.M. Hayden et al., Phys. Rev. Lett. 67, 3622 (1991) ADSCrossRefGoogle Scholar
  45. 45.
    S. Zhou, Z. Wang, Phys. Rev. B 70, 020501 (2004) ADSCrossRefGoogle Scholar
  46. 46.
    S. Raghu et al., Phys. Rev. B 85, 024516 (2012) ADSCrossRefGoogle Scholar
  47. 47.
    E. Plekhanov, S. Sorella, M. Fabrizio, Phys. Rev. Lett. 90, 187004 (2003) ADSCrossRefGoogle Scholar
  48. 48.
    D. Sénéchal et al., Phys. Rev. B 87, 075123 (2013) ADSCrossRefGoogle Scholar
  49. 49.
    M.A. Kastner et al., Rev. Mod. Phys. 70, 897 (1998) ADSCrossRefGoogle Scholar
  50. 50.
    S. Raghu et al., Phys. Rev. B 85, 024516 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    J.A. Riera, A.P. Young, Phys. Rev. B 39, 9697 (1989) ADSCrossRefGoogle Scholar
  52. 52.
    T. Koretsune, M. Ogata, J. Phys. Soc. Jpn 74, 1390 (2005) ADSCrossRefGoogle Scholar
  53. 53.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994) ADSCrossRefGoogle Scholar
  54. 54.
    V. Barzykin, D. Pines, Adv. Phys. 58, 1 (2009) ADSCrossRefGoogle Scholar
  55. 55.
    D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012), references therein ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KalyaniKalyaniIndia
  2. 2.Department of PhysicsKrishnagar Govt. CollegeKrishnagarIndia

Personalised recommendations