Advertisement

Systematic investigation of the reactive ion beam sputter deposition process of SiO2

  • Maria Mateev
  • Thomas Lautenschläger
  • Daniel Spemann
  • Annemarie Finzel
  • Jürgen W. Gerlach
  • Frank Frost
  • Carsten Bundesmann
Regular Article
  • 53 Downloads

Abstract

Ion beam sputter deposition (IBSD) is an established physical vapour deposition technique that offers the opportunity to tailor the properties of film-forming particles and, consequently, film properties. This is because of two reasons: (i) ion generation and acceleration (ion source), sputtering (target) and film deposition (substrate) are locally separated. (ii) The angular and energy distribution of sputtered target atoms and scattered primary particles depend on ion incidence angle, ion energy, and ion species. Ion beam sputtering of a Si target in a reactive oxygen atmosphere was used to grow SiO2 films on silicon substrates. The sputtering geometry, ion energy and ion species were varied systematically and their influence on film properties was investigated. The SiO2 films are amorphous. The growth rate increases with increasing ion energy and ion incidence angle. Thickness, index of refraction, stoichiometry, mass density and surface roughness show a strong correlation with the sputtering geometry. A considerable amount of primary inert gas particles is found in the deposited films. The primary ion species also has an impact on the film properties, whereas the influence of the ion energy is rather small.

Keywords

Solid State and Materials 

References

  1. 1.
    R. Behrisch, W. Eckstein eds. Sputtering by particle bombardment: experiments and computer calculations from threshold to mev energies (Springer, Berlin, 2007) Google Scholar
  2. 2.
    S. Rossnagel, J. Sites, J. Vac. Sci. Technol. A 2, 376 (1984) ADSCrossRefGoogle Scholar
  3. 3.
    T. Motohiro, Y. Taga, Thin Solid Films 120, 313 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    K. Nomura, H. Ogawa, J. Appl. Phys. 71, 1469 (1992) ADSCrossRefGoogle Scholar
  5. 5.
    A. Tabata, N. Matsuno, Y. Suzuoki, T. Mizutani, Thin Solid Films 289, 84 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    M. Alvisi, G. De Nunzio, M. Ferrara, M. Perrone, A. Rizzo, S. Scaglione, L. Vasanelli, J. Vac. Sci. Technol. A 16, 3408 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    H. Liu, S. Xiong, L. Li, Y. Zhang, Thin Solid Films 484, 170 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    I. Radović, Y. Serruys, Y. Limoge, N. Bibić, S. Poissonnet, O. Jaoul, M. Mitrić, N. Romčević, M. Milosavljević, Mater. Chem. Phys. 104, 172 (2007) CrossRefGoogle Scholar
  9. 9.
    I. Radović, Y. Serruys, Y. Limoge, M. Mitrić, M. Milosavljević, N. Romčević, N. Bibić, Optoelectron. Adv. Mat. 1, 247 (2007) Google Scholar
  10. 10.
    C. Bundesmann, I.-M. Eichentopf, S. Mändl, H. Neumann, Thin Solid Films 516, 8604 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, M. Grössl, Thin Solid Films 517, 6058 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Ji, Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, R. Fan, D. Chen, Thin Solid Films 545, 111 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, Y. Ji, Appl. Opt. 53, A83 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    Y. Ji, Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, R. Fan, D. Chen, Chin. Phys. Lett. 31, 046401 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    G. Emiliani, S. Scaglione, J. Vac. Sci. Technol. A 5, 1824 (1987) ADSCrossRefGoogle Scholar
  16. 16.
    M. Lambrinos, R. Valizadeh, J. Colligon, J. Vac. Sci. Technol. B 16, 589 (1998) CrossRefGoogle Scholar
  17. 17.
    M. Alvisi, G. De Nunzio, M. Perrone, A. Rizzo, S. Scaglione, L. Vasanelli, Thin Solid Films 338, 269 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    J. Wu, C. Lee, Appl. Opt. 45, 3510 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    J. Seong, D. Choi, K. Yoon, J. Non-Cryst. Solids 352, 84 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    J. Seong, D. Choi, J. Appl. Polym. Sci. 105, 2444 (2007) CrossRefGoogle Scholar
  21. 21.
    A. Ullah, H. Wilke, I. Memon, Y. Shen, D.T. Nguyen, C. Woidt, H. Hillmer, J. Micromech. Microeng. 25, 055019 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    R. Feder, C. Bundesmann, H. Neumann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 316, 198 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    R. Feder, F. Frost, H. Neumann, C. Bundesmann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 317, 137 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    C. Bundesmann, R. Feder, J. Gerlach, H. Neumann, Thin Solid Films 551, 46 (2014) ADSCrossRefGoogle Scholar
  25. 25.
    C. Bundesmann, R. Feder, T. Lautenschläger, H. Neumann, Contrib. Plasma Phys. 55, 737 (2015) ADSCrossRefGoogle Scholar
  26. 26.
    R. Feder, C. Bundesmann, H. Neumann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 334, 88 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    C. Bundesmann, R. Feder, R. Wunderlich, U. Teschner, M. Grundmann, H. Neumann, Thin Solid Films 589, 487 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    T. Lautenschläger, R. Feder, H. Neumann, C. Rice, M. Schubert, C. Bundesmann, Nucl. Instrum.Methods Phys. Res. Sect. B 385, 30 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    T. Lautenschläger, C. Bundesmann, J. Vac. Sci. Technol. A 35, 041001 (2017) CrossRefGoogle Scholar
  30. 30.
    C. Bundesmann, T. Lautenschläger, E. Thelander, D. Spemann, Nucl. Instrum. Methods Phys. Res. Sect. B 395, 17 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    C. Bundesmann, T. Lautenschläger, D. Spemann, A. Finzel, E. Thelander, M. Mensing, F. Frost, Appl. Surf. Sci. 42, 331 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    C. Bundesmann, T. Lautenschläger, D. Spemann, A. Finzel, M. Mensing, F. Frost, Eur. Phys. J. B 90, 197 (2017) ADSCrossRefGoogle Scholar
  33. 33.
    M. Zeuner, F. Scholze, B. Dathe, H. Neumann, Surf. Coat. Technol. 142–144, 39 (2001) CrossRefGoogle Scholar
  34. 34.
    D. Spemann, T. Reinert, J. Vogt, T. Andrea, N. Barapatre, R. Feder, A. Jakob, N. Liebing, C. Meinecke, F. Menzel, M. Rothermel, T. Butz, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 2175 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    H. Fujiwara, Spectroscopic ellipsometry: principles and applications (John Wiley & Sons, Chichester, 2007) Google Scholar
  36. 36.
    C. Herzinger, B. Johs, W. McGahan, J. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998) ADSCrossRefGoogle Scholar
  37. 37.
    N. Laegreid, G. Wehner, J. Appl. Phys. 32, 365 (1961) ADSCrossRefGoogle Scholar
  38. 38.
    D. Rosenberg, G. Wehner, J. Appl. Phys. 33, 1842 (1962) ADSCrossRefGoogle Scholar
  39. 39.
    J. Kirschner, H. Etzkorn, Appl. Surf. Sci. 3, 251 (1979) ADSCrossRefGoogle Scholar
  40. 40.
    H. Tsuge, S. Esho, J. Appl. Phys. 52, 4391 (1981) ADSCrossRefGoogle Scholar
  41. 41.
    A. Rizzo, M. Alvisi, F. Sarto, S. Scaglione, L. Vasanelli, Surf. Coat. Technol. 108–109, 297 (1998) CrossRefGoogle Scholar
  42. 42.
    A. Goehlich, N. Niemöller, H. Döbele, Phys. Rev. B 62, 9349 (2000) ADSCrossRefGoogle Scholar
  43. 43.
    M. Stepanova, S. Dew, J. Vac. Sci. Technol. A 19, 2805 (2001) ADSCrossRefGoogle Scholar
  44. 44.
    M. Stepanova, S. Dew, J. Appl. Phys. 92, 1699 (2002) ADSCrossRefGoogle Scholar
  45. 45.
    M. Stepanova, S. Dew, Nucl. Instrum. Methods Phys. Res. Sect. B 215, 357 (2004) ADSCrossRefGoogle Scholar
  46. 46.
    F. Frost, R. Fechner, B. Ziberi, J. Völlner, D. Flamm, A. Schindler, J. Phys. Condens. Matter 21, 224026 (2009) ADSCrossRefGoogle Scholar
  47. 47.
    N. Wiberg, E. Wiberg, Lehrbuch der Anorganischen Chemie (Gruyter, Berlin, 1995) Google Scholar
  48. 48.
    S. Ghandhi, VLSI fabrication principles (Wiley, New York, 1994) Google Scholar
  49. 49.
    P. Heaney, C. Prewitt, G. Gibbs, Rev. Mineral. 29, 1 (1994) Google Scholar
  50. 50.
    M. Jerman, Z. Qiao, D. Mergel, Appl. Opt. 44, 3006 (2005) ADSCrossRefGoogle Scholar
  51. 51.
    K. Juskevičius, M. Audronis, A. Subačius, S. Kičas, T. Tolenis, R. Buzelis, R. Drazdys, M. Gaspariunas, V. Kovalevskij, A. Matthews, A. Leyland, Thin Solid Films 589, 95 (2015) ADSCrossRefGoogle Scholar
  52. 52.
    C.-C. Lee, C.-J. Tang, Appl. Opt. 45, 9125 (2006) ADSCrossRefGoogle Scholar
  53. 53.
    S.-H. Jeong, J.-K. Kim, B.-S. Kim, S.-H. Shim, B.-T. Lee, Vacuum 76, 507 (2004) ADSCrossRefGoogle Scholar
  54. 54.
    F. Smidt, Int. Mater. Rev. 35, 61 (1990) CrossRefGoogle Scholar
  55. 55.
    S. Mohan, M.G. Krishna, Vacuum 46, 645 (1995) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maria Mateev
    • 1
  • Thomas Lautenschläger
    • 1
  • Daniel Spemann
    • 1
  • Annemarie Finzel
    • 1
  • Jürgen W. Gerlach
    • 1
  • Frank Frost
    • 1
  • Carsten Bundesmann
    • 1
  1. 1.Leibniz-Institut für Oberflächenmodifizierung e.V.LeipzigGermany

Personalised recommendations