Advertisement

Crown oxygen-doping graphene with embedded main-group metal atoms

  • Liyuan Wu
  • Qian Wang
  • Chuanghua Yang
  • Ruge Quhe
  • Pengfei Guan
  • Pengfei Lu
Regular Article

Abstract

Different main-group metal atoms embedded in crown oxygen-doping graphene (metal@OG) systems are studied by the density functional theory. The binding energies and electronic structures are calculated by using first-principles calculations. The binding energy of metal@OG system mainly depends on the electronegativity of the metal atom. The lower the value of the electronegativity, the larger the binding energy, indicating the more stable the system. The electronic structure of metal@OG arouses the emergence of bandgap and shift of Dirac point. It is shown that interaction between metal atom and crown oxygen-doping graphene leads to the graphene’s stable n-doping, and the metal@OG systems are stable semiconducting materials, which can be used in technological applications.

Keywords

Solid State and Materials 

References

  1. 1.
    A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    C. Riedl, U. Starke, J. Bernhardt, M. Franke, K. Heinz, Phys. Rev. B 76, 245406 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006) CrossRefGoogle Scholar
  6. 6.
    J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, E.S. Snow, Nano Lett. 10, 3001 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, M.F. Crommie, Science 329, 544 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Adv. Mater. 24, 5782 (2012) CrossRefGoogle Scholar
  9. 9.
    C. Sire, F. Ardiaca, S. Lepilliet, J.W.T. Seo, M.C. Hersam, G. Dambrine, V. Derycke, Nano Lett. 12, 1184 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Wu, Y.M. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, P. Avouris, Nature 472, 74 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    F. Xia, D.B. Farmer, Y. Lin, P. Avouris, Nano Lett. 10, 715 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    D.E. Jiang, V.R. Cooper, S. Dai, Nano Lett. 9, 4019 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    B.F. Machado, P. Serp, Catal. Sci. Technol. 2, 54 (2012) CrossRefGoogle Scholar
  14. 14.
    A.N. Andriotis, M. Menon, R.M. Sheetz, L. Chernozatonskii, Phys. Rev. Lett. 90, 026801 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    B. Sanyal, O. Eriksson, U. Jansson, H. Grennberg, Phys. Rev. B 79, 113409 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    L. Pisani, B. Montanari, N.M. Harrison, New J. Phys. 10, 033002 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    M. Woiñska, K.Z. Milowska, J.A. Majewski, Phys. Status Solidi (c) 10, 1167 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    P. Rani, V.K. Jindal, RSC Adv. 3, 802 (2013) CrossRefGoogle Scholar
  19. 19.
    S. Watcharotone et al., Nano Lett. 7, 1888 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008) CrossRefGoogle Scholar
  21. 21.
    K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015 (2010) CrossRefGoogle Scholar
  22. 22.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010) CrossRefGoogle Scholar
  23. 23.
    H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 21, 3335 (2011) CrossRefGoogle Scholar
  24. 24.
    X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, H. Dai, Science 324, 768 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    A.A. Maarouf et al., J. Chem. Theory Comput. 9, 2398 (2013) CrossRefGoogle Scholar
  26. 26.
    J. Guo, J. Lee, C.I. Contescu, N.C. Gallego, S.T. Pantelides, S.J. Pennycook et al., Nat. Commun. 5, 5389 (2014) CrossRefGoogle Scholar
  27. 27.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  28. 28.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  29. 29.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  30. 30.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  32. 32.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    L. Pauling, The nature of the chemical bond, 3rd edn. (Cornell University Press, Ithaca, NY, 1960) Google Scholar
  34. 34.
    J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic chemistry: principles of structure and reactivity, 4th edn. (HarperCollins, New York, USA, 1993) Google Scholar
  35. 35.
    J. Daintith, A dictionary of chemistry, 6th edn. (OUP, Oxford, 2008) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liyuan Wu
    • 1
  • Qian Wang
    • 1
  • Chuanghua Yang
    • 2
  • Ruge Quhe
    • 3
  • Pengfei Guan
    • 4
  • Pengfei Lu
    • 1
    • 5
  1. 1.State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and TelecommunicationsBeijingP.R. China
  2. 2.School of Physics and Telecommunication Engineering, Shaanxi Sci-Tech UniversityHanzhongP.R. China
  3. 3.School of Science, Beijing University of Posts and TelecommunicationsBeijingP.R. China
  4. 4.Beijing Computational Science Research CenterBeijingP.R. China
  5. 5.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of SciencesShanghaiP.R. China

Personalised recommendations