Advertisement

Sudden spreading of infections in an epidemic model with a finite seed fraction

  • Takehisa Hasegawa
  • Koji Nemoto
Regular Article

Abstract

We study a simple case of the susceptible-weakened-infected-removed model in regular random graphs in a situation where an epidemic starts from a finite fraction of initially infected nodes (seeds). Previous studies have shown that, assuming a single seed, this model exhibits a kind of discontinuous transition at a certain value of infection rate. Performing Monte Carlo simulations and evaluating approximate master equations, we find that the present model has two critical infection rates for the case with a finite seed fraction. At the first critical rate the system shows a percolation transition of clusters composed of removed nodes, and at the second critical rate, which is larger than the first one, a giant cluster suddenly grows and the order parameter jumps even though it has been already rising. Numerical evaluation of the master equations shows that such sudden epidemic spreading does occur if the degree of the underlying network is large and the seed fraction is small.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Barrat, M. Barthélemy, A. Vespignani, Dynamical processes on complex networks (Cambridge University Press, Cambridge, 2008) Google Scholar
  4. 4.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Moreno, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 26, 521 (2002) ADSGoogle Scholar
  7. 7.
    W.O. Kermack, A.G. McKendrick, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 115, 700 (1927) ADSCrossRefGoogle Scholar
  8. 8.
    R.M. Anderson, R.M. May, Infectious diseases of humans: dynamics and control (Oxford University Press, New York, 1992) Google Scholar
  9. 9.
    R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Rev. Mod. Phys. 87, 925 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Miller, A.C. Slim, E.M. Volz, J. R. Soc. Interface 9, 890 (2012) CrossRefGoogle Scholar
  11. 11.
    J.P. Gleeson, Phys. Rev. Lett. 107, 068701 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    J. Lindquist, J. Ma, P. Van den Driessche, F.H. Willeboordse, J. Math. Biol. 62, 143 (2011) MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.P. Gleeson, Phys. Rev. X 3, 021004 (2013) Google Scholar
  14. 14.
    A.V. Goltsev, S.N. Dorogovtsev, J.G. Oliveira, J.F.F. Mendes, Phys. Rev. Lett. 109, 128702 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    G. Ódor, Phys. Rev. E 90, 032110 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    P. Moretti, M.A. Muñoz, Nat. Commun. 4 (2013) Google Scholar
  17. 17.
    G. Ódor, R. Dickman, G. Ódor, Sci. Rep. 5 (2015) Google Scholar
  18. 18.
    W. Cota, S.C. Ferreira, G. Ódor, Phys. Rev. E 93, 032322 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    P.S. Dodds, D.J. Watts, Phys. Rev. Lett. 92, 218701 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    P.S. Dodds, D.J. Watts, J. Theor. Biol. 232, 587 (2005) CrossRefGoogle Scholar
  22. 22.
    D. Centola, V.M. Eguíluz, M.W. Macy, Physica A 374, 449 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    D. Centola, Science 329, 1194 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    P.L. Krapivsky, S. Redner, D. Volovik, J. Stat. Mech. Theory Exp. 2011, P12003 (2011) CrossRefGoogle Scholar
  25. 25.
    M. Zheng, L. Lü, M. Zhao, Phys. Rev. E 88, 012818 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    E. Campbell, M. Salathé, Sci. Rep. 3 (2013) Google Scholar
  27. 27.
    S. Melnik, J.A. Ward, J.P. Gleeson, M.A. Porter, Chaos 23, 013124 (2013) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    T. Hasegawa, K. Nemoto, J. Stat. Mech. Theory Exp. 2014, P11024 (2014) CrossRefGoogle Scholar
  29. 29.
    W. Wang, M. Tang, H.-F. Zhang, Y.-C. Lai, Phys. Rev. E 92, 012820 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    D.J. O’Sullivan, G.J. O’Keeffe, P.G. Fennell, J.P. Gleeson, Front. Phys. 3, 71 (2015) Google Scholar
  31. 31.
    J.C. Miller, J. Complex Netw. 4, 201 (2016) MathSciNetCrossRefGoogle Scholar
  32. 32.
    W. Wang, M. Tang, P. Shu, Z. Wang, New J. Phys. 18, 013029 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    D. Lee, W. Choi, J. Kertész, B. Kahng, Sci. Rep. 7, 5723 (2017) ADSCrossRefGoogle Scholar
  34. 34.
    W. Choi, D. Lee, B. Kahng, Phys. Rev. E 95, 022304 (2017) ADSCrossRefGoogle Scholar
  35. 35.
    H.-K. Janssen, M. Müller, O. Stenull, Phys. Rev. E 70, 026114 (2004) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    G. Bizhani, M. Paczuski, P. Grassberger, Phys. Rev. E 86, 011128 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    K. Chung, Y. Baek, D. Kim, M. Ha, H. Jeong, Phys. Rev. E 89, 052811 (2014) ADSCrossRefGoogle Scholar
  38. 38.
    H.-K. Janssen, O. Stenull, Europhys. Lett. 113, 26005 (2016) ADSCrossRefGoogle Scholar
  39. 39.
    G.J. Baxter, S.N. Dorogovtsev, A.V. Goltsev, J.F. Mendes, Phys. Rev. E 83, 051134 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    J.C. Miller, PLoS ONE 9, e101421 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    Z.-L. Hu, J.-G. Liu, G.-Y. Yang, Z.-M. Ren, Europhys. Lett. 106, 18002 (2014) ADSCrossRefGoogle Scholar
  42. 42.
    S. Ji, L. Lu, C.H. Yeung, Y. Hu, arXiv:1508.04294 (2015)
  43. 43.
    T. Hasegawa, K. Nemoto, Phys. Rev. E 93, 032324 (2016) ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    T. Tomé, R.M. Ziff, Phys. Rev. E 82, 051921 (2010) ADSCrossRefGoogle Scholar
  45. 45.
    D.R. de Souza, T. Tomé, R.M. Ziff, J. Stat. Mech. Theory Exp. 2011, P03006 (2011) CrossRefGoogle Scholar
  46. 46.
    D. Stauffer, A. Aharony, Introduction to percolation theory (Taylor and Francis, London, 1994) Google Scholar
  47. 47.
    T. Hasegawa, T. Nogawa, K. Nemoto, Europhys. Lett. 104, 16006 (2013) ADSCrossRefGoogle Scholar
  48. 48.
    T. Hasegawa, T. Nogawa, K. Nemoto, Discontin. Nonlinearity Complex. 3, 319 (2014) CrossRefGoogle Scholar
  49. 49.
    W. Choi, D. Lee, B. Kahng, Phys. Rev. E 95, 062115 (2017) ADSCrossRefGoogle Scholar
  50. 50.
    L. Chen, F. Ghanbarnejad, W. Cai, P. Grassberger, Europhys. Lett. 104, 50001 (2013) ADSCrossRefGoogle Scholar
  51. 51.
    W. Cai, L. Chen, F. Ghanbarnejad, P. Grassberger, Nat. Phys. 11, 936 (2015) CrossRefGoogle Scholar
  52. 52.
    L. Hébert-Dufresne, B.M. Althouse, Proc. Natl. Acad. Sci. USA 112, 10551 (2015) MathSciNetCrossRefGoogle Scholar
  53. 53.
    P. Grassberger, L. Chen, F. Ghanbarnejad, W. Cai, Phys. Rev. E 93, 042316 (2016) ADSCrossRefGoogle Scholar
  54. 54.
    N. Azimi-Tafreshi, Phys. Rev. E 93, 042303 (2016) ADSCrossRefGoogle Scholar
  55. 55.
    R. Juhász, G. Ódor, C. Castellano, M.A. Muñoz, Phys. Rev. E 85, 066125 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsIbaraki UniversityMitoJapan
  2. 2.Department of PhysicsHokkaido UniversitySapporoJapan

Personalised recommendations