Advertisement

Process interpretation of current entropic bounds

  • Cesare Nardini
  • Hugo Touchette
Regular Article

Abstract

We show for Markov diffusion processes that the quadratic entropic bound, recently derived for the rate functions of nonequilibrium currents, can be seen as being produced by an effective process that creates current fluctuations in a sub-optimal way by modifying only the non-reversible part of the drift or force of the process considered while keeping its reversible part constant. This provides a clear interpretation of the bound in terms of a physical process, which explains, among other things, its relation to the fluctuation relation, linear response, and reversible limits. The existence of more general quadratic bounds, and related uncertainty relations, for physical quantities other than currents is also discussed.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    P. Pietzonka, A.C. Barato, U. Seifert, Phys. Rev. E 93, 052145 (2016) ADSCrossRefGoogle Scholar
  2. 2.
    T.R. Gingrich, J.M. Horowitz, N. Perunov, J.L. England, Phys. Rev. Lett. 116, 120601 (2016) ADSCrossRefGoogle Scholar
  3. 3.
    T.R. Gingrich, G.M. Rotskoff, J.M. Horowitz, J. Phys. A: Math. Theor. 50, 184004 (2017) ADSCrossRefGoogle Scholar
  4. 4.
    A.C. Barato, U. Seifert, Phys. Rev. Lett. 114, 158101 (2015) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A.C. Barato, U. Seifert, Phys. Rev. E 92, 032127 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    P. Pietzonka, A.C. Barato, U. Seifert, J. Stat. Mech. 2016, 124004 (2016) CrossRefGoogle Scholar
  7. 7.
    P. Pietzonka, A.C. Barato, U. Seifert, J. Phys. A: Math. Theor. 49, 34LT01 (2016) CrossRefGoogle Scholar
  8. 8.
    A.C. Barato, U. Seifert, Phys. Rev. X 6, 041053 (2016) Google Scholar
  9. 9.
    M. Nguyen, S. Vaikuntanathan, Proc. Nat. Acad. Sci. USA 113, 14231 (2016) CrossRefGoogle Scholar
  10. 10.
    R. Chetrite, H. Touchette, Phys. Rev. Lett. 111, 120601 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    R. Chetrite, H. Touchette, Ann. Henri Poincaré 16, 2005 (2015) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Chetrite, H. Touchette, J. Stat. Mech. 2015, P12001 (2015) CrossRefGoogle Scholar
  13. 13.
    A. Dembo, O. Zeitouni, Large deviations techniques and applications, 2nd edn. (Springer, New York, 1998) Google Scholar
  14. 14.
    F. den Hollander, Large deviations, Fields institute monograph (AMS, Providence, 2000) Google Scholar
  15. 15.
    H. Touchette, Phys. Rep. 478, 1 (2009) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Touchette, Physica A (2018), doi: https://doi.org/10.1016/j.physa.2017.10.046
  17. 17.
    K. Jacobs, Stochastic processes for physicists: understanding noisy systems (Cambridge University Press, Cambridge, 2010) Google Scholar
  18. 18.
    C. Maes, K. Netočný, B. Wynants, Physica A 387, 2675 (2008) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Maes, K. Netočný, Europhys. Lett. 82, 30003 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    A. Barato, R. Chetrite, J. Stat. Phys. 160, 1154 (2015) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Hoppenau, D. Nickelsen, A. Engel, New J. Phys. 18, 083010 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    S. Pigolotti, I. Neri, E. Roldán, F. Jülicher, Phys. Rev. Lett. 119, 140604 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    A. Celani, S. Bo, R. Eichhorn, E. Aurell, Phys. Rev. Lett. 109, 260603 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    S. Bo, A. Celani, J. Stat. Phys. 154, 1325 (2014) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Polettini, A. Lazarescu, M. Esposito, Phys. Rev. E 94, 052104 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    E. Nelson, Dynamical theories of Brownian motion (Princeton University Press, Princeton, 1967) Google Scholar
  28. 28.
    R. Chetrite, K. Gawedzki, J. Stat. Phys. 137, 890 (2009) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Chetrite, S. Gupta, J. Stat. Phys. 143, 543 (2011) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    R.L. Jack, P. Sollich, Eur. Phys. J. Special Topics 224, 2351 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    P. Reimann, Phys. Rep. 361, 57 (2002) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    P. Tsobgni Nyawo, H. Touchette, Phys. Rev. E 94, 032101 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    C. Hyeon, W. Hwang, Phys. Rev. E 96, 012156 (2017) ADSCrossRefGoogle Scholar
  34. 34.
    U.G. Haussmann, E. Pardoux, Ann. Probab. 14, 1188 (1986) MathSciNetCrossRefGoogle Scholar
  35. 35.
    M.V.S. Bonança, C. Jarzynski, Phys. Rev. E 93, 022101 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    H. Risken, The Fokker-Planck equation: methods of solution and applications, 3rd edn. (Springer, Berlin, 1996) Google Scholar
  37. 37.
    W. Bryc, A. Dembo, J. Theor. Probab. 10, 307 (1997) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Service de Physique de l’État Condensé, CNRS UMR 3680, CEA-SaclayGif-sur-YvetteFrance
  2. 2.National Institute for Theoretical Physics (NITheP)StellenboschSouth Africa
  3. 3.Institute of Theoretical Physics, Department of Physics, University of StellenboschStellenboschSouth Africa

Personalised recommendations