Physical properties of voltage gated pores

  • Laureano Ramírez-Piscina
  • José M. Sancho
Regular Article


Experiments on single ionic channels have contributed to a large extent to our current view on the function of cell membrane. In these experiments the main observables are the physical quantities: ionic concentration, membrane electrostatic potential and ionic fluxes, all of them presenting large fluctuations. The classical theory of Goldman–Hodking–Katz assumes that an open channel can be well described by a physical pore where ions follow statistical physics. Nevertheless real molecular channels are active pores with open and close dynamical states. By skipping the molecular complexity of real channels, here we present the internal structure and calibration of two active pore models. These models present a minimum set of degrees of freedom, specifically ion positions and gate states, which follow Langevin equations constructed from a unique potential energy functional and by using standard rules of statistical physics. Numerical simulations of both models are implemented and the results show that they have dynamical properties very close to those observed in experiments of Na and K molecular channels. In particular a significant effect of the external ion concentration on gating dynamics is predicted, which is consistent with previous experimental observations. This approach can be extended to other channel types with more specific phenomenology.


Statistical and Nonlinear Physics 


  1. 1.
    B. Hille, Ion channels of excitable membranes, 3rd edn. (Sinauer, Sunderland, MA, 2001) Google Scholar
  2. 2.
    C. Hammond, Cellular and molecular neurophysiology, 4th edn. (Academic Press, London, 2015) Google Scholar
  3. 3.
    R. Phillips, J. Kondev, J. Theriot, Physical biology of the cell (Garland Science, New York, NY, 2009) Google Scholar
  4. 4.
    A.L. Hodgkin, A.F. Huxley, J. Phys. 117, 500 (1952) Google Scholar
  5. 5.
    P. Jung, J. Shuai, Europhys. Lett. 56, 29 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    G. Schmid, I. Goychuk, P. Hänggi, Europhys. Lett. 56, 22 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    M. Ozer, M. Perc, M. Uzuntarla, Europhys. Lett. 86, 40008 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Groff, H. DeRemigio, G.D. Smith, in Stochastic methods in neuroscience, edited by C. Laing, G.J. Lord (Oxford University Press, New York, NY, 2009), p. 29 Google Scholar
  9. 9.
    Y. Huang, S. Rüdiger, J. Shuai, Eur. Phys. J. B 83, 401 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    L. Ramírez-Piscina, J.M. Sancho, Europhys. Lett. 108, 50008 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    L. Ramírez-Piscina, J.M. Sancho, Physica A, submitted Google Scholar
  12. 12.
    D.E. Goldman, J. Gen. Physiol. 27, 37 (1943) CrossRefGoogle Scholar
  13. 13.
    D. Sigg, F. Bezanilla, E. Stefani, Proc. Natl. Acad. Sci. USA 100, 7611 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    R.D. Coalson, J. Phys. A: Math. Theor. 41, 115001 (2008) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    E.M. Izhikevich, Dynamical systems in neuroscience (The MIT Press, Cambridge, 2010) Google Scholar
  16. 16.
    R. Roux, F. Bezanilla, in Molecular machines, edited by B. Roux (World Scientific, Singapore, 2011), p. 231 Google Scholar
  17. 17.
    R. Swenson, C. Armstrong, Nature 291, 427 (1981) ADSCrossRefGoogle Scholar
  18. 18.
    K.S. Cole, J.W. Moore, J. Gen. Physiol. 44, 123 (1960) CrossRefGoogle Scholar
  19. 19.
    F. Sigworth, E. Neher, Nature 287, 447 (1980) ADSCrossRefGoogle Scholar
  20. 20.
    W. Stühmer, M. Stocker, B. Sakmann, P. Seeburg, A. Baumann, A. Grupe, O. Pongs, FEBS Lett. 242, 199 (1988) CrossRefGoogle Scholar
  21. 21.
    M.H. Cheng, A.B. Mamonov, J.W. Dukes, R.D. Coalson, J. Phys. Chem. B 111, 5956 (2007) CrossRefGoogle Scholar
  22. 22.
    O. Teijido, S.M. Rappaport, A. Chamberlin, S.Y. Noskov, V.M. Aguilella, T.K. Rostovtseva, S.M. Bezrukov, J. Biol. Chem. 289, 23670 (2014) CrossRefGoogle Scholar
  23. 23.
    X. Jianxue, G. Yunfan, R. Wei, H. Sanjue, W. Fuzhou, Physica D 100, 212 (1997) ADSCrossRefGoogle Scholar
  24. 24.
    S.P. Dawson, O.D. Uchitel, Physica D 168, 356 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    Y.W. Parc, D.S. Koh, W. Sung, Eur. Phys. J. B 69, 127 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department de Física, Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Departament de Física de la Matèria Condensada, Universitat de Barcelona, Universitat de Barcelona Institute of Complex Systems (UBICS)BarcelonaSpain

Personalised recommendations