Advertisement

Ab initio study of phonon dispersion and thermodynamic properties of pure and doped pyrites

  • Abolore A. Musari
  • Daniel P. Joubert
  • Joseph A. Olowofela
  • Adio T. Akinwale
  • Gboyega A. Adebayo
Regular Article
  • 79 Downloads

Abstract

Pyrites (FeS2) are solid minerals that are found abundantly in Nigeria and are easy to prepare in laboratories. In this work, FeS2 is studied extensively in its pure state as well as when iron is substitutionally doped with zinc and calcium at concentrations of 0, 0.25, 0.5, 0.75 and 1. Using density functional theory, the eectronic, dynamic and thermodynamic properties were calculated. The results revealed that the lattice parameters and bulk modulus increases with increasing concentration and the obtained values are in agreement with available experimental and theoretical values. Though pyrite, when doped with zinc, obeys Vegard’s law, doping with calcium revealed pronounced deviation from this law. The calculated band structures showed that FeS2 has an indirect band gap whose size decreases after introducing zinc while doping with calcium increases the band gap. The phonon dispersion of the end members FeS2 and ZnS2 indicate that the systems are dynamically stable while CaS2 is dynamically unstate. Also, the thermodynamic properties of the pure and doped pyrites were calculated and the ranges of temperature at which the lattice and electronic degrees of freedom contribute to the specific heat capacity are presented.

Keywords

Solid State and Materials 

References

  1. 1.
    R.T. Shuey, Semiconductor ore mining: development in economic geology (Elsevier Scientific Publishing Co., Amsterdam, 1975) Google Scholar
  2. 2.
    RMRDC – Raw Materials Research and Development Council, http://www.rmrdc.gov.ng
  3. 3.
    Pyrite – Webmineral 2010, http://www.webmineral.com/data/pyrite-shtml
  4. 4.
    D.S. Inosov, V.B. Zabolotnyy, D.V. Evtushinsky, A.A. Kordyuk, B. Buchner, R. Follath, H. Berger, S.V. Borisenko, New J. Phys. 10, 125027 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    E. Morosan, H.W. Zandbergen, B.S. Dennis, J.W.G. Bos, Y. Onose, T. Klimezuk, A.P. Ramirez, N.P. Ong, R.J. Cava, Nat. Phys. 2, 544 (2006) CrossRefGoogle Scholar
  6. 6.
    R.C. Morris, Phys. Rev. Lett. 34, 1164 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    M.R. Hilton, R. Bauer, S.V. Didziulis, M.T. Dugger, J.M. Keem, J. Scholhamer, Surf. Coat. Technol. 53, 13 (1992) CrossRefGoogle Scholar
  8. 8.
    L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, R. Temen, Nature 387, 791 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J.C. Bernede, J. Tedd, J. Pouzed, J. Salardenne, Sol. Energy Mater. Sol. Cell 46, 115 (1997) CrossRefGoogle Scholar
  10. 10.
    Z. Chen, H. Liu, X. Chen, G. Chu, S. Chu, H. Zhang, Appl. Mater. Interfaces 8, 20267 (2016) CrossRefGoogle Scholar
  11. 11.
    L.F. Mattheis, Phys. Rev. B 8, 3719 (1973) ADSCrossRefGoogle Scholar
  12. 12.
    N.L. Heda, A. Dashora, A. Marwal, Y. Sharma, S.K. Srivastava, G. Ahmed, R. Jain, B.I. Ahuja, J. Phys. Chem. Solids 71, 187 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, J. Joannopoulos, Phys. Rev. B 56, 1354 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    P. Raybaud, J. Hafner, G. Kresse, H. Toulhoat, J. Phys.: Condens. Matter 9, 11107 (1997) ADSGoogle Scholar
  15. 15.
    P. Raybaud, G. Kresse, J. Hafner, H. Toulhoat, J. Phys.: Condens. Matter 9, 11085 (1997) ADSGoogle Scholar
  16. 16.
    S. Lauer, A.X. Trautwein, F.E. Harris, Phys. Rev. B 29, 6774 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    P. Toulmin, P.B. Barton Jr., Geochim. Cosmochim. Acta 28, 641 (1963) ADSCrossRefGoogle Scholar
  18. 18.
    R. Sun, G. Ceder, Phys. Rev. B 84, 245211 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    K.M. Rosso, U. Becker, M.F. Hochella Jr., Am. Mineral. 84, 1535 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    M. Reich, U. Becker, First principle calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite, Ph.D. thesis, 2004 Google Scholar
  21. 21.
    P. Olsson, J. Vidal, D. Linoot, J. Phys.: Condens. Matter 23, 405801 (2011) Google Scholar
  22. 22.
    R.J. Bouchard, Mater. Res. Bull. 3, 563 (1968) CrossRefGoogle Scholar
  23. 23.
    T.A. Bither, P.C. Donohue, W.H. Cloud, P.E. Bierstedt, H.S. Young, J. Solid State Chem. 1, 526 (1970) ADSCrossRefGoogle Scholar
  24. 24.
    M. Born, R. Oppenheimer, Ann. Phys. 389, 457 (1927) CrossRefGoogle Scholar
  25. 25.
    W. Kohn, P. Hohenberg, Phys. Rev. B. 136, 864 (1964) CrossRefGoogle Scholar
  26. 26.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Wang, Z.K. Liu, L.Q. Chen, Acta Mater. 52, 2665 (2004) CrossRefGoogle Scholar
  28. 28.
    Z.L. Liu, L.C. Cai, X.R. Chen, Q. Wu, F.Q. Jing, J. Phys.: Condens. Matter 21, 095408 (2009) ADSGoogle Scholar
  29. 29.
    R. Arroyave, Z.K. Liu, Phys. Rev. B 74, 17418 (2006) CrossRefGoogle Scholar
  30. 30.
    T. Mohri, Y. Chen, J. Alloys Compd. 383, 23 (2004) CrossRefGoogle Scholar
  31. 31.
    V.L. Moruzzi, J.F. Janak, K. Schwarz, Phys. Rev. B 37, 790 (1988) ADSCrossRefGoogle Scholar
  32. 32.
    F. Peng, A.Z. Fu, X.D. Yang, Solid State Commun. 145, 91 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    S.L. Shang, Y. Wang, Z.K. Liu, Phys. Rev. B 75, 024302 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    R. Arroyave, D. Shin, Z.K. Liu, Acta Mater. 53, 1809 (2005) CrossRefGoogle Scholar
  35. 35.
    S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001) ADSCrossRefGoogle Scholar
  36. 36.
    P. Giannozzi, S. Baroni, N. Bonini, M.C. Calandra, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys.: Condens. Matter 21, 395502 (2009) Google Scholar
  37. 37.
    S. Baroni, P. Giannozzi, E. Isaev, Rev. Mineral. Geochem. 71, 39 (2010) CrossRefGoogle Scholar
  38. 38.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  39. 39.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990) ADSCrossRefGoogle Scholar
  40. 40.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    L.Z Vegard, Z. Phys. 5, 393 (1921) ADSCrossRefGoogle Scholar
  42. 42.
    R. Murphy, D.R. Strongin, Surf. Sci. Rep. 64, 1 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    M. Blanchard, M. Alfredsson, J. Brodholt, G.D. Price, K. Wright, C.R.A. Catlow, J. Phys. Chem. B 109, 22067 (2005) CrossRefGoogle Scholar
  44. 44.
    T. Belaroussi, T. Benmessabih, F. Hamdache, B. Amrani, Physica B 403, 2649 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsFederal University of AgricultureAbeokutaNigeria
  2. 2.Physics with Electronics Unit, Moshood Abiola PolytechnicAbeokutaNigeria
  3. 3.National Institute for Theoretical Physics, Mandelstam Institute for Theoretical Physics, School of Physics University of WitwatersrandJohannesburgSouth Africa
  4. 4.Department of Computer ScienceFederal University of AgricultureAbeokutaNigeria

Personalised recommendations