Advertisement

Amplitude death induced by mixed attractive and repulsive coupling in the relay system

  • Nannan Zhao
  • Zhongkui Sun
  • Wei Xu
Regular Article

Abstract

The amplitude death (AD) phenomenon is found in the relay system in the presence of the mixed couplings composed of attractive coupling and repulsive coupling. The generation mechanism of AD is revealed and shows that the middle oscillator achieving AD is a prerequisite to further suppress oscillation of the outermost oscillators for the paradigmatic Stuart-Landau and Rössler models. Moreover, regarding the Stuart-Landau relay system as a small motif of star network, we also observe that the mixed couplings can facilitate AD state of the whole network system. Particularly, the threshold of coupling strength is invariable with the change of network size. Our findings may shed a new insight to explore the effects of hybrid coupling on complex systems, also provide a new strategy to control dynamic behaviors in engineering science and neuroscience fields.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    V.S. Anishchenko, T.E. Vadivasova, D.E. Postnov, M.A. Safonova, Int. J. Bifurc. Chaos 2, 633 (1992) CrossRefGoogle Scholar
  2. 2.
    Z. Sun, X. Yang, Chaos 21, 033114 (2011) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Ouannas, Z. Odibat, Nonlinear Dyn. 81, 765 (2015) CrossRefGoogle Scholar
  4. 4.
    C.M. Kim, S. Rim, W.H. Kye, J.W. Ryu, Y.J. Park, Phys. Lett. A 320, 39 (2003) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Hu, S. Chen, L. Chen, Phys. Lett. A 339, 455 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    G. Saxena, A. Prasad, R. Ramaswamy, Phys. Rep. 521, 205 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    A. Koseska, E. Volkov, J. Kurths, Phys. Rep. 531, 173 (2013) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Koseska, E. Volkov, J. Kurths, Phys. Rev. Lett. 111, 024103 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    D.G. Aronson, G.B. Erementrout, N. Kopell, Physica D 41, 403 (1990) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    P.C. Matthews, S.H. Strogatz, Phys. Rev. Lett. 65, 1701 (1990) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    D.V. RamanaReddy, A. Sen, G.L. Johnston, Phys. Rev. Lett. 80, 5109 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    K. Konishi, Phys. Rev. E 68, 13 (2003) CrossRefGoogle Scholar
  15. 15.
    R. Karnatak, R. Ramaswamy, A. Prasad, Phys. Rev. E 76, 432 (2007) CrossRefGoogle Scholar
  16. 16.
    N. Zhao, Z. Sun, X. Yang, W. Xu, Europhys. Lett. 118, 30005 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    A. Prasad, M. Dhamala, B.M. Adhikari, R. Ramaswamy, Phys. Rev. E 81, 027201 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    A. Prasad, Y.C. Lai, A. Gavrielides, V. Kovanis, Phys. Lett. A 318, 71 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    D.V. RamanaReddy, A. Sen, G.L. Johnston, Phys. Rev. Lett. 85, 3381 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    N. Suzuki, C. Furusawa, K. Kaneko, PLoS ONE 6, e27232 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    E. Ullner, A. Zaikin, E.I. Volkov, J. García-Ojalvo, Phys. Rev. Lett. 99, 148103 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Chen, J. Xiao, W. Liu, Y. Yang, Phys. Rev. E 80, 046206 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    B.K. Bera, C. Hens, D. Ghosh, Phys. Lett. A 380, 2366 (2016) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    C.R. Hens, O.I. Olusola, P. Pal, S.K. Dana, Phys. Rev. E 88, 034902 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    C.R. Hens, P. Pal, S.K. Bhowmick, P.K. Roy, A. Sen, S.K. Dana, Phys. Rev. E 89, 032901 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    M. Nandan, C.R. Hens, P. Pal, S.K. Dana, Chaos 24, 043103 (2014) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M.I. Rabinovich, P. Varona, A.I. Selverston, H.D. Abarbanel, Rev. Mod. Phys. 78, 1213 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    H. Hong, S.H. Strogatz, Phys. Rev. Lett. 106, 054102 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    I. Fischer, R. Vicente, J.M. Buldú, M. Peil, C.R. Mirasso, M.C. Torrent, J. García-Ojalvo, Phys. Rev. Lett. 97, 123902 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    A. Sharma, M.D. Shrimali, A. Prasad, R. Ramaswamy, U. Feudel, Phys. Rev. E 84, 016226 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    A. Sharma, M.D. Shrimali, K. Aihara, Phys. Rev. E 90, 062907 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    R. Banerjee, D. Ghosh, E. Padmanaban, R. Ramaswamy, L.M. Pecora, S.K. Dana, Phys. Rev. E 85, 027201 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    R. Gutiérrez, R. Sevilla-Escoboza, P. Piedrahita, C. Finke, U. Feudel, J.M. Buldu, G. Huerta-Cuellar, R. Jaimes-Reategui, Y. Moreno, S. Boccaletti, Phys. Rev. E 88, 052908 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anP.R. China

Personalised recommendations