Advertisement

A continuous time random walk (CTRW) integro-differential equation with chemical interaction

  • Rami Ben-Zvi
  • Alon Nissan
  • Harvey Scher
  • Brian BerkowitzEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook

Abstract

A nonlocal-in-time integro-differential equation is introduced that accounts for close coupling between transport and chemical reaction terms. The structure of the equation contains these terms in a single convolution with a memory function M (t), which includes the source of non-Fickian (anomalous) behavior, within the framework of a continuous time random walk (CTRW). The interaction is non-linear and second-order, relevant for a bimolecular reaction A + BC. The interaction term ΓP A  (s, t) P B  (s, t) is symmetric in the concentrations of A and B (i.e. P A and P B ); thus the source terms in the equations for A, B and C are similar, but with a change in sign for that of C. Here, the chemical rate coefficient, Γ, is constant. The fully coupled equations are solved numerically using a finite element method (FEM) with a judicious representation of M (t) that eschews the need for the entire time history, instead using only values at the former time step. To begin to validate the equations, the FEM solution is compared, in lieu of experimental data, to a particle tracking method (CTRW-PT); the results from the two approaches, particularly for the C profiles, are in agreement. The FEM solution, for a range of initial and boundary conditions, can provide a good model for reactive transport in disordered media.

References

  1. 1.
    B. Berkowitz, A. Cortis, M. Dentz, H. Scher, Rev. Geophys. 44, RG2003 (2003) ADSGoogle Scholar
  2. 2.
    B. Bijeljic, A.H. Muggeridge, M.J. Blunt, Water Resour. Res. 40, W11501 (2004) CrossRefADSGoogle Scholar
  3. 3.
    B. Bijeljic, P. Mostaghimi, M.J. Blunt, Phys. Rev. Lett. 107, 204502 (2011) CrossRefADSGoogle Scholar
  4. 4.
    A.E. Scheidegger, An evaluation of the accuracy of the diffusivity equation for describing miscible displacement in porous media, in Proceedings of the Theory of Fluid Flow in Porous Media Conference, University of Oklahoma (1959), pp. 101–116 Google Scholar
  5. 5.
    S.E. Silliman, E.S. Simpson, Water Resour. Res. 23, 1667 (1987) CrossRefADSGoogle Scholar
  6. 6.
    B. Berkowitz, J. Klafter, R. Metzler, H. Scher, Water Resour. Res. 38, 1191 (2002) CrossRefADSGoogle Scholar
  7. 7.
    M. Dentz, A. Cortis, H. Scher, B. Berkowitz, Adv. Water Res. 27, 155 (2004) CrossRefGoogle Scholar
  8. 8.
    Y. Edery, A. Guadagnini, H. Scher, B. Berkowitz, Adv. Water Res. 51, 86 (2013) CrossRefGoogle Scholar
  9. 9.
    B. Berkowitz, I. Dror, S.K. Hansen, H. Scher, Rev. Geophys. 54, 930 (2016) CrossRefADSGoogle Scholar
  10. 10.
    Y. Edery, H. Scher, B. Berkowitz, Water Resour. Res. 46, W07524 (2010) CrossRefADSGoogle Scholar
  11. 11.
    Y. Edery, H. Scher, B. Berkowitz, Water Resour. Res. 47, W08535 (2011) CrossRefADSGoogle Scholar
  12. 12.
    Y. Edery, I. Dror, H. Scher, B. Berkowitz, Phys. Rev. E 91, 052130 (2015) MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    S. Raveh-Rubin, Y. Edery, I. Dror, B. Berkowitz, Water Resour. Res. 51, 7702 (2015) CrossRefADSGoogle Scholar
  14. 14.
    I.M. Sokolov, M.G.W. Schmidt, F. Sagués, Phys. Rev. E 73, 31102 (2006) CrossRefADSGoogle Scholar
  15. 15.
    S. Eule, R. Friedrich, F. Jenko, I.M. Sokolov, Phys. Rev. E 78, 060102(R) (2008) CrossRefADSGoogle Scholar
  16. 16.
    C.N. Angstmann, I.C. Donnelly, B.I. Henry, Math. Model. Nat. Phenom. 8, 17 (2013) MathSciNetCrossRefGoogle Scholar
  17. 17.
    S.K. Hansen, B. Berkowitz, Phys. Rev. E 91, 32113 (2015) MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    R. Ben-Zvi, H. Scher, S. Jiang, B. Berkowitz, Transp. Porous Media 115, 239 (2016) MathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Ben-Zvi, H. Scher, B. Berkowitz, Int. J. Numer. Methods Eng. 112, 459 (2017) CrossRefGoogle Scholar
  20. 20.
    H. Scher, M. Lax, Phys. Rev. B 7, 4502 (1973) CrossRefADSGoogle Scholar
  21. 21.
    R. Ben-Zvi, Comput. Struct. 34, 881 (1990) CrossRefGoogle Scholar
  22. 22.
    L. Greengard, J. Strain, Commun. Pure Appl. Math. 43, 949 (1990) CrossRefGoogle Scholar
  23. 23.
    B. Alpert, L. Greengard, T. Hagstrom, SIAM J. Numer. Anal. 37, 1138 (2000) MathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Jiang, L. Greengard, Comput. Math. Appl. 47, 955 (2004) MathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Li, SIAM J. Numer. Anal. 31, 4696 (2010) Google Scholar
  26. 26.
    S. Jiang, L. Greengard, S. Wang, Adv. Comput. Math. 41, 529 (2015) MathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Cortis, B. Berkowitz, Ground Water 43, 947 (2005) CrossRefGoogle Scholar
  28. 28.
    K. Xu, S. Jiang, J. Sci. Comput. 55, 16 (2013) MathSciNetCrossRefGoogle Scholar
  29. 29.
    G.M. Porta, M. Riva, A. Guadagnini, Adv. Water Res. 35, 151 (2012) CrossRefGoogle Scholar
  30. 30.
    G.M. Porta, G. Ceriotti, J.-F. Thovert, J. Contam. Hydrol. 185–186, 1 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations