Advertisement

Extreme values of elastic strain and energy in sine-Gordon multi-kink collisions

  • Aliakbar Moradi Marjaneh
  • Alidad Askari
  • Danial Saadatmand
  • Sergey V. Dmitriev
Regular Article

Abstract

In our recent study the maximal values of kinetic and potential energy densities that can be achieved in the collisions of N slow kinks in the sine-Gordon model were calculated analytically (for N = 1, 2, and 3) and numerically (for 4 ≤ N ≤ 7). However, for many physical applications it is important to know not only the total potential energy density but also its two components (the on-site potential energy density and the elastic strain energy density) as well as the extreme values of the elastic strain, tensile (positive) and compressive (negative). In the present study we give (i) the two components of the potential energy density and (ii) the extreme values of elastic strain. Our results suggest that in multi-soliton collisions the main contribution to the potential energy density comes from the elastic strain, but not from the on-site potential. It is also found that tensile strain is usually larger than compressive strain in the core of multi-soliton collision.

Keywords

Solid State and Materials 

References

  1. 1.
    Yu.S. Kivshar, G.P. Agrawal, Optical solitons from fibers to photonic crystals (Academic Press, Burlington, 2003) Google Scholar
  2. 2.
    S.V. Suchkov, A.A. Sukhorukov, J. Huang, S.V. Dmitriev, C. Lee, Yu.S. Kivshar, Laser Photonics Rev. 10, 177 (2016) CrossRefGoogle Scholar
  3. 3.
    P.S. Lomdahl, J. Stat. Phys. 39, 551 (1985) ADSCrossRefGoogle Scholar
  4. 4.
    J. Pfeiffer, M. Schuster, A.A. Abdumalikov, A.V. Ustinov, Phys. Rev. Lett. 96, 034103 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    S. Watanabe, H.S.J. van der Zant, S.H. Strogatz, T.P. Orlando, Physica D 97, 429 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    N. Manton, P. Sutcliffe, Topological solitons (Cambridge University Press, Cambridge, UK, 2004) Google Scholar
  7. 7.
    H. Weigel, Chiral soliton models for baryons, Lect. Notes Phys. (Springer, Berlin, 2008), Vol. 743 Google Scholar
  8. 8.
    A.R. Bishop, T. Schneider editors, Solitons in condensed matter physics (Springer Verlag, Berlin, 1978) Google Scholar
  9. 9.
    R.N. Garifullin, L.A. Kalyakin, M.A. Shamsutdinov, Comput. Math. Math. Phys. 47, 1158 (2007) MathSciNetCrossRefGoogle Scholar
  10. 10.
    S.V. Dmitriev, K. Abe, T. Shigenari, Phys. Rev. B 58, 2513 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    S.V. Dmitriev, T. Shigenari, A.A. Vasiliev, K. Abe, Phys. Rev. B 55, 8155 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    S.V. Dmitriev, K. Abe, T. Shigenari, J. Phys. Soc. Jpn. 65, 3938 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    F.J. Buijnsters, A. Fasolino, M.I. Katsnelson, Phys. Rev. Lett. 113, 217202 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    E.A. Korznikova, S.V. Dmitriev, J. Phys. D: Appl. Phys. 47, 345307 (2014) CrossRefGoogle Scholar
  15. 15.
    R.D. Yamaletdinov, V.A. Slipko, Y.V. Pershin, Phys. Rev. B 96, 094306 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    T.I. Belova, A.E. Kudryavtsev, Phys. Usp. 40, 359 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    O.M. Braun, Yu.S. Kivshar, The Frenkel-Kontorova model: concepts, methods, and applications (Springer, Berlin, 2004) Google Scholar
  18. 18.
    J. Cuevas-Maraver, P.G. Kevrekidis, F. Williams editors, The sine-Gordon model and its applications from pendula and Josephson junctions to gravity and high energy physics (Springer, Berlin, 2014) Google Scholar
  19. 19.
    S.Y. Lou, H.C. Hu, X.Y. Tang, Phys. Rev. E 71, 036604 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    J.K. Perring, T.H.R. Skyrme, Nucl. Phys. 31, 550 (1962) CrossRefGoogle Scholar
  21. 21.
    R. Hirota, J. Phys. Soc. Jpn. 33, 1459 (1972) ADSCrossRefGoogle Scholar
  22. 22.
    P.J. Caudrey, J.C. Eilbeck, J.D. Gibbon, R.K. Bullough, J. Phys. A: Math. Nucl. Gen. 6, L112 (1973) ADSCrossRefGoogle Scholar
  23. 23.
    V.A. Gani, A.E. Kudryavtsev, Phys. Rev. E 60, 3305 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    A.M. Wazwaz, J. Appl. Math. Inf. 30, 925 (2012) Google Scholar
  25. 25.
    A.M. Gumerov, E.G. Ekomasov, F.K. Zakir’yanov, R.V. Kudryavtsev, Comput. Math. Math. Phys. 54, 491 (2014) MathSciNetCrossRefGoogle Scholar
  26. 26.
    A.M. Gumerov, E.G. Ekomasov, R.R. Murtazin, V.N. Nazarov, Comput. Math. Math. Phys. 55, 628 (2015) MathSciNetCrossRefGoogle Scholar
  27. 27.
    V.A. Gani, V. Lensky, M.A. Lizunova, J. High Energy Phys. 08, 147 (2015) CrossRefGoogle Scholar
  28. 28.
    S.V. Dmitriev, P.G. Kevrekidis, Yu.S. Kivshar, Phys. Rev. E 78, 046604 (2008) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    S.V. Dmitriev, Yu.S. Kivshar, T. Shigenari, Phys. Rev. E 64, 056613 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    A.E. Miroshnichenko, S.V. Dmitriev, A.A. Vasiliev, T. Shigenari, Nonlinearity 13, 837 (2000) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    K. Javidan, J. Phys. A 39, 10565 (2006) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    D. Saadatmand, S.V. Dmitriev, P.G. Kevrekidis, Phys. Rev. D 92, 056005 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    A. Moradi Marjaneh, D. Saadatmand, K. Zhou, S.V. Dmitriev, M.E. Zomorrodian, Commun. Nonlinear Sci. 49, 30 (2017) CrossRefGoogle Scholar
  34. 34.
    A. Moradi Marjaneh, V.A. Gani, D. Saadatmand, S.V. Dmitriev, K. Javidan, J. High Energy Phys. 07, 028 (2017) ADSCrossRefGoogle Scholar
  35. 35.
    R. Rajaraman, Phys. Rep. 21, 227 (1975) ADSCrossRefGoogle Scholar
  36. 36.
    Yu.S. Kivshar, D.E. Pelinovsky, T. Cretegny, M. Peyrard, Phys. Rev. Lett. 80, 5032 (1998) ADSCrossRefGoogle Scholar
  37. 37.
    N.R. Quintero, A. Sanchez, F.G. Mertens, Phys. Rev. E 62, 5695 (2000) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    V.A. Gani, A.E. Kudryavtsev, M.A. Lizunova, Phys. Rev. D 89, 125009 (2014) ADSCrossRefGoogle Scholar
  39. 39.
    P. Dorey, K. Mersh, T. Romanczukiewicz, Y. Shnir, Phys. Rev. Lett. 107, 091602 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    V.A. Gani, M.A. Lizunova, R.V. Radomskiy, J. High Energy Phys. 4, 43 (2016) ADSGoogle Scholar
  41. 41.
    A. Khare, I.C. Christov, A. Saxena, Phys. Rev. E 90, 023208 (2014) ADSCrossRefGoogle Scholar
  42. 42.
    A.E. Kudryavtsev, M.A. Lizunova, Phys. Rev. D 95, 056009 (2017) ADSCrossRefGoogle Scholar
  43. 43.
    K. Javidan, Phys. Rev. E 78, 046607 (2008) ADSCrossRefGoogle Scholar
  44. 44.
    Ya. Frenkel, T. Kontorova, Phys. Z. Sowjetunion 13, 1 (1938) Google Scholar
  45. 45.
    B. Ahn, A.P. Zhilyaev, H.-J. Lee, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 635, 109 (2015) CrossRefGoogle Scholar
  46. 46.
    C.M. Cepeda-Jimenez, J.I. Beltran, A. Hernando, M.A. Garcia, F. Yndurain, A. Zhilyaev, M.T. Perez-Prado, Acta Mater. 123, 206 (2017) CrossRefGoogle Scholar
  47. 47.
    W.H. Li, X.H. Yao, P.S. Branicio, X.Q. Zhang, N.B. Zhang, Acta Mater. 140, 274 (2017) CrossRefGoogle Scholar
  48. 48.
    S.V. Dmitriev, T. Shigenari, Chaos 12, 324 (2002) ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    S.V. Dmitriev, P.G. Kevrekidis, B.A. Malomed, D.J. Frantzeskakis, Phys. Rev. E 68, 056603 (2003) ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    S.V. Dmitriev, P.G. Kevrekidis, N. Yoshikawa, J. Phys. A: Math. Gen. 38, 7617 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsQuchan Branch, Islamic Azad UniversityQuchanIran
  2. 2.Department of PhysicsFerdowsi University of MashhadMashhadIran
  3. 3.Department of PhysicsUniversity of Sistan and BaluchestanZahedanIran
  4. 4.Institute for Metals Superplasticity Problems RASUfaRussia
  5. 5.National Research Tomsk State UniversityTomskRussia

Personalised recommendations