Advertisement

On the applicability of low-dimensional models for convective flow reversals at extreme Prandtl numbers

  • Manu Mannattil
  • Ambrish Pandey
  • Mahendra K. Verma
  • Sagar Chakraborty
Regular Article
  • 64 Downloads

Abstract

Constructing simpler models, either stochastic or deterministic, for exploring the phenomenon of flow reversals in fluid systems is in vogue across disciplines. Using direct numerical simulations and nonlinear time series analysis, we illustrate that the basic nature of flow reversals in convecting fluids can depend on the dimensionless parameters describing the system. Specifically, we find evidence of low-dimensional behavior in flow reversals occurring at zero Prandtl number, whereas we fail to find such signatures for reversals at infinite Prandtl number. Thus, even in a single system, as one varies the system parameters, one can encounter reversals that are fundamentally different in nature. Consequently, we conclude that a single general low-dimensional deterministic model cannot faithfully characterize flow reversals for every set of parameter values.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, J. Fluid Mech. 449, 169 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    K.R. Sreenivasan, A. Bershadskii, J.J. Niemela, Phys. Rev. E 65, 056306 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    E. Brown, A. Nikolaenko, G. Ahlers, Phys. Rev. Lett. 95, 084503 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    H.-D. Xi, Q. Zhou, K.-Q. Xia, Phys. Rev. E 73, 056312 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    K. Sugiyama, R. Ni, R.J.A.M. Stevens, T. Chan, S.Q. Zhou, H.D. Xi, C. Sun, S. Grossmann, K.Q. Xia, D. Lohse, Phys. Rev. Lett. 105, 034503 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    M. Chandra, M.K. Verma, Phys. Rev. E 83, 067303 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    M. Chandra, M.K. Verma, Phys. Rev. Lett. 110, 114503 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    R. Ni, S.-D. Huang, K.-Q. Xia, J. Fluid Mech. 778, 9 (2015) CrossRefGoogle Scholar
  9. 9.
    G.A. Glatzmaiers, P.H. Roberts, Nature 377, 203 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    E. Dormy, A.M. Soward, Mathematical aspects of natural dynamos (CRC Press, Boca Raton, 2007) Google Scholar
  11. 11.
    K. Petrovay, Liv. Rev. Solar Phys. 7, 6 (2010) ADSGoogle Scholar
  12. 12.
    T.M. Cronin, Principles of paleoclimatology (Columbia University Press, New York, 1999) Google Scholar
  13. 13.
    F.F. Araujo, S. Grossmann, D. Lohse, Phys. Rev. Lett. 95, 084502 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    C. Gissinger, E. Dormy, S. Fauve, EPL 90, 49001 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    B. Podvin, A. Sergent, J. Fluid Mech. 766, 172 (2015) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Brown, G. Ahlers, Phys. Fluids 20, 075101 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    F. Pétrélis, S. Fauve, E. Dormy, J.-P. Valet, Phys. Rev. Lett. 102, 144503 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    R. Benzi, Phys. Rev. Lett. 95, 024502 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    R. Benzi, R. Verzicco, EPL 81, 64008 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Phys. Rev. Lett. 45, 712 (1980) ADSCrossRefGoogle Scholar
  21. 21.
    F. Takens, Detecting strange attractors in turbulence, in Dynamical systems and turbulence, Warwick 1980, Lecture Notes in Mathematics (Springer, Berlin, 1981), Vol. 898, p. 366 Google Scholar
  22. 22.
    D. Aeyels, SIAM J. Control Optim. 19, 595 (1981) MathSciNetCrossRefGoogle Scholar
  23. 23.
    R. Mañé, On the dimension of the compact invariant sets of certain non-linear maps, in Dynamical systems and turbulence, Warwick 1980, Lecture Notes in Mathematics (Springer, Berlin, 1981), Vol. 898, p. 230 Google Scholar
  24. 24.
    T. Sauer, J.A. Yorke, M. Casdagli, J. Stat. Phys. 65, 579 (1991) ADSCrossRefGoogle Scholar
  25. 25.
    H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge University Press, Cambridge, 2004) Google Scholar
  26. 26.
    D. Ruelle, Proc. R. Soc. Lond. A 427, 241 (1990) ADSCrossRefGoogle Scholar
  27. 27.
    P. Grassberger, T. Schreiber, C. Schaffrath, Int. J. Bifurc. Chaos 1, 521 (1991) CrossRefGoogle Scholar
  28. 28.
    M. Mannattil, H. Gupta, S. Chakraborty, Astrophys. J. 833, 208 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    S. Chandrasekhar, Hydrodynamic and hydromagnetic stability (Dover, New York, 1961) Google Scholar
  30. 30.
    J.K. Bhattacharjee, Convection and chaos in fluids (World Scientific, Singapore, 1987) Google Scholar
  31. 31.
    M.K. Verma, A. Kumar, A. Pandey, New J. Phys. 19, 025012 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    P.K. Mishra, A.K. De, M.K. Verma, V. Eswaran, J. Fluid Mech. 668, 480 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    M.K. Verma, A.G. Chatterjee, K.S. Reddy, R.K. Yadav, S. Paul, M. Chandra, R. Samtaney, Pramana 81, 617 (2013) ADSCrossRefGoogle Scholar
  34. 34.
    A. Pandey, M.K. Verma, P.K. Mishra, Phys. Rev. E 89, 023006 (2014) ADSCrossRefGoogle Scholar
  35. 35.
    J. Schmalzl, M. Breuer, U. Hansen, EPL 67, 390 (2004) ADSCrossRefGoogle Scholar
  36. 36.
    E.P. van der Poel, R.J.A.M. Stevens, D. Lohse, J. Fluid Mech. 736, 177 (2013) ADSCrossRefGoogle Scholar
  37. 37.
    A. Pandey, M.K. Verma, A.G. Chatterjee, B. Dutta, Pramana 87, 13 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    M.K. Verma, S.C. Ambhire, A. Pandey, Phys. Fluids 27, 047102 (2015) ADSCrossRefGoogle Scholar
  39. 39.
    P. Pal, P. Wahi, S. Paul, M.K. Verma, K. Kumar, P.K. Mishra, EPL 87, 54003 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    A. Galka, Topics in nonlinear time series analysis (World Scientific, Singapore, 2000) Google Scholar
  41. 41.
    M.T. Rosenstein, J.J. Collins, C.J. De Luca, Physica D 73, 82 (1994) ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    M.B. Kennel, R. Brown, H.D.I. Abarbanel, Phys. Rev. A 45, 3403 (1992) ADSCrossRefGoogle Scholar
  43. 43.
    L. Cao, Physica D 110, 43 (1997) ADSCrossRefGoogle Scholar
  44. 44.
    J. Theiler, Phys. Rev. A 34, 2427 (1986) ADSCrossRefGoogle Scholar
  45. 45.
    D.R. Fredkin, J.A. Rice, Phys. Rev. E 51, 2950 (1995) ADSCrossRefGoogle Scholar
  46. 46.
    J.-P. Eckmann, D. Ruelle, Physica D 56, 185 (1992) ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    S. Ramdani, F. Bouchara, J.F. Casties, Phys. Rev. E 76, 036204 (2007) ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J. Doyne Farmer, Physica D 58, 77 (1992) ADSCrossRefGoogle Scholar
  49. 49.
    T. Schreiber, A. Schmitz, Phys. Rev. Lett. 77, 635 (1996) ADSCrossRefGoogle Scholar
  50. 50.
    J. Feder, Fractals (Springer, New York, 1988) Google Scholar
  51. 51.
    B.J. West, M.F. Shlesinger, Int. J. Mod. Phys. B 3, 795 (1989) ADSCrossRefGoogle Scholar
  52. 52.
    J.D. Pelletier, D.L. Turcotte, Adv. Geophys. 40, 91 (1999) ADSCrossRefGoogle Scholar
  53. 53.
    P. Dmitruk, P.D. Mininni, A. Pouquet, S. Servidio, W.H. Matthaeus, Phys. Rev. E 90, 043010 (2014) ADSCrossRefGoogle Scholar
  54. 54.
    H.G. Schuster, W. Just, Deterministic chaos: an introduction, 4th ed. (John Wiley & Sons, Weinheim, 2006) Google Scholar
  55. 55.
    J. Theiler, Phys. Lett. A 155, 480 (1991) ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    S. Paul, P. Wahi, M.K. Verma, Int. J. Non-Linear Mech. 46, 772 (2011) ADSCrossRefGoogle Scholar
  57. 57.
    M. Berhanu, R. Monchaux, S. Fauve, N. Mordant, F. Pétrélis, A. Chiffaudel, F. Daviaud, B. Dubrulle, L. Marié, F. Ravelet, M. Bourgoin, Ph. Odier, J.-F. Pinton, R. Volk, EPL 77, 59001 (2007) ADSCrossRefGoogle Scholar
  58. 58.
    W. Lowrie, Fundamentals of geophysics (Cambridge University Press, Cambridge, 2007) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Manu Mannattil
    • 1
  • Ambrish Pandey
    • 1
  • Mahendra K. Verma
    • 1
  • Sagar Chakraborty
    • 1
  1. 1.Department of PhysicsIndian Institute of Technology KanpurUttar PradeshIndia

Personalised recommendations