Advertisement

Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory

  • Vafa ZiaeiEmail author
  • Thomas Bredow
Regular Article
  • 43 Downloads

Abstract

We study qualitatively ultra-fast proton transfer (PT) in the first singlet (S1) state of liquid water (absorption onset) through excited-state dynamics by means of time-dependent density functional theory and ab initio Born-Oppenheimer molecular dynamics. We find that after the initial excitation, a PT occurs in S1 in form of a rapid jump to a neighboring water molecule, on which the proton either may rest for a relatively long period of time (as a consequence of possible defect in the hydrogen bond network) followed by back and forth hops to its neighboring water molecule or from which it further moves to the next water molecule accompanied by back and forth movements. In this way, the proton may become delocalized over a long water wire branch, followed again by back and forth jumps or short localization on a water molecule for some femtoseconds. As a result, the mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete. Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated electron. The spatial extent of the ejected solvated electron is mainly localized within one solvent shell with overlappings on the nearest neighbor water molecules and delocalizing (diffuse) tails extending beyond the first solvent sphere. During the entire ultra-short excited-state dynamics the remaining OH radical from the initially excited water molecule exhibits an extremely low mobility and is non-reactive.

Keywords

Computational Methods 

Supplementary material

References

  1. 1.
    C.G. Elles, A.E. Jailaubekov, R.A. Crowell, S.E. Bradforth, J. Chem. Phys. 125, 044515 (2016) ADSCrossRefGoogle Scholar
  2. 2.
    B. Winter, R. Weber, W. Widdra, M. Dittmar, M. Faubel, I.V. Hertel, J. Phys. Chem. A 108, 2625 (2004) CrossRefGoogle Scholar
  3. 3.
    A. Bernas, C. Ferradini, J.-P. Jay-Gerin, J. Photochem. Photobiol. A 117, 171 (1998) CrossRefGoogle Scholar
  4. 4.
    O. Marsalek, F. Uhlig, J. VandeVondele, P. Jungwirth, Acc. Chem. Res. 45, 23 (2012) CrossRefGoogle Scholar
  5. 5.
    T.W. Marin, K. Takahashi, D.M. Bartels, J. Chem. Phys. 125, 104314 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    J.V. Coe, A.D. Earhart, M.H. Cohen, G.J. Hoffman, H.W. Sarkas, K.H. Bowen, J. Chem. Phys. 107, 6023 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    S. Kratz, J. Torres-Alacan, J. Urbanek, J. Lindner, P. Vöhringer, Phys. Chem. Chem. Phys. 12, 12169 (2010) CrossRefGoogle Scholar
  8. 8.
    R.A. Crowell, D.M. Bartels, J. Phys. Chem. 100, 17940 (1996) CrossRefGoogle Scholar
  9. 9.
    C.L. Thomsen, D. Madsen, S.R. Keiding, J. Thogersen, O. Christiansen, J. Chem. Phys. 110, 3453 (1999) ADSCrossRefGoogle Scholar
  10. 10.
    C.G. Elles, I.A. Shkrob, R.A. Crowell, S.E. Bradforth, J. Chem. Phys. 126, 164503 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    J. Torres-Alacan, S. Kratz, P. Vöhringer, Phys. Chem. Chem. Phys. 13, 20806 (2011) CrossRefGoogle Scholar
  12. 12.
    V. Engel, R. Schinke, V. Staemmler, J. Chem. Phys. 88, 129 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Tully, J. Chem. Phys. 93, 1061 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett. 98, 023001 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    E. Tapavicza, I. Tavernelli, U. Rothlisberger, C. Filippi, M.E. Casida, J. Chem. Phys. 129, 124108 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    I. Tavernelli, E. Tapavicza, U. Rothlisberger, J. Mol. Struct.: THEOCHEM 914, 22 (2009) CrossRefGoogle Scholar
  17. 17.
    I. Tavernelli, B.F.E. Curchod, A. Laktionov, U. Rothlisberger, J. Chem. Phys. 133, 194104 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    R.E. Larsen, W.J. Glover, B.J. Schwartz, Science 329, 5987 (2010) CrossRefGoogle Scholar
  19. 19.
    L.D. Jacobson, J.M. Herbert, Science 331, 6023 (2011) CrossRefGoogle Scholar
  20. 20.
    L. Turi, À. Madaràsz, Science 331, 6023 (2011) CrossRefGoogle Scholar
  21. 21.
    J.R. Casey, A. Kahros, B.J. Schwartz, J. Phys. Chem. B 117, 14173 (2013) CrossRefGoogle Scholar
  22. 22.
    F. Uhlig, O. Marsalek, P. Jungwirth, J. Phys. Chem. Lett. 3, 3071 (2012) CrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  25. 25.
    V. Garbuio, M. Cascellai, L. Reining, R. Del Sole, O. Pulci, Phys. Rev. Lett. 97, 137402 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    V. Ziaei, T. Bredow, J. Chem. Phys. 145, 064508 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    A. Bernas, C. Ferradini, J.-P. Jay-Gerin, Chem. Phys. 222, 151 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    CPMD, http://www.cpmd.org/, Copyright IBM Corp. 1990–2015, Copyright MPI für Festkörperforschung Stuttgart 1997–2001
  29. 29.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    A. Hassanali et al., PNAS 110, 13723 (2013) ADSCrossRefGoogle Scholar
  31. 31.
    J. VandeVondele, M. Sprik, Phys. Chem. Chem. Phys. 7, 1363 (2005) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Mulliken Center for Theoretical Chemistry, University of BonnBonnGermany

Personalised recommendations