Dynamical theory of photon superradiative emission by nanoscale system of Bose-condensed magnons

  • Sergey N. Andrianov
  • Sergey A. Moiseev
Regular Article


We have shown the possibility of non-Dicke superradiance for non-ideal magnon Bose-Einstein condensate (BEC) in a broadband frequency bath. Here, it is found that all the stored energy in the system of Bose-condensed magnons can be irradiated into a short pulse with a time delay caused by the strong frequency modulation of magnons due to direct inter-particle interactions in the Bose-condensed state. The last mechanism radically distinguishes this effect from the well-known Dicke superradiance of two-level atomic ensemble where the delay is connected with enhancement of the inter-atomic correlations due to exchange by virtual photons. In our case, the superradiance is the consequence of Bose-condensation in the coherent state where the particles are coupled by direct interaction. We have discussed the conditions for observation of this effect for Bose-condensed magnons in a solid-state sample with a spatial size smaller comparing with the wavelength of the emitted field. In general, we had shown that this kind of superradiance can proceed in samples with ferromagnetic type interaction. As for the antiferromagnetic ones, the effect of magnon superradiance takes place without delay.


Solid State and Materials 


  1. 1.
    R. Dicke, Phys. Rev. 93, 99 (1954)ADSCrossRefGoogle Scholar
  2. 2.
    R. Bonifacio, L.A. Lugato, Phys. Rev. A 11, 1507 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    R.J. Glauber, Phys. Rev. 130, 2529 (1963)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Allen, J.H. Eberly, Optical resonance and two-level atoms (Wiley Interscience Publication, John Wiley and Sons, New York, London, Sydney, Toronto, 1975)Google Scholar
  5. 5.
    R.W. Gould, Phys. Lett. 19, 477 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    Yu.M. Bun’kov, B.S. Dumesh, Zh. Eksp. Teor. Fiz. 68, 1161 (1975)Google Scholar
  7. 7.
    U.Kh. Kopvillem, S.V. Prants, Sov. Phys. JETP 49, 525 (1979)ADSGoogle Scholar
  8. 8.
    A.S. Borovik-Romanov, Yu.M. Bunkov, V.V. Dmitriev, Yu.M. Mukharskii, Pis’ma Zh. Eksp. Teor. Fiz. 40, 256 (1984)Google Scholar
  9. 9.
    Yu.M. Bunkov, G.E. Volovik, J. Low Temp. Phys. 150, 135 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. 84, 5868 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    A. Oosawa, T. Takamasu, K. Tatani, H. Abe, N. Tsujii, O. Suzuki, H. Tanaka, G. Kido, K. Kindo, Phys. Rev. B 66, 104405 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Nature 443, 430 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M.S. Tagirov, E.M. Alakshin, Yu.M. Bunkov, R.R. Gazizulin, A.M. Gazizulina, L.I. Isaenko, A.V. Klochkov, T.R. Safin, K.R. Safiullin, S.A. Zhurkov, J. Low Temp. Phys. 175, 167 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    L.H. Bennett, E. Della Torre, J. Mod. Phys. 5, 693 (2014)CrossRefGoogle Scholar
  15. 15.
    O. Dzyapko, V.E. Demidov, S.O. Demokritov, G.A. Melkov, V.L. Safonov, Appl. Phys. Lett. 92, 162510 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S.M. Rezende, N. Zagury, Phys. Lett. A 29, 47 (1969)ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Rezende. Phys. Rev. B 79, 174411 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    F.S. Vannucchi, A.R. Vasconcellos, R. Luzzi. Appl. Phys. Lett. 103, 072401 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultant Bureau, New York, 1974)Google Scholar
  20. 20.
    A.I. Akhiezer, S.V. Peletminskii, Methods of statistical physics (Pergamon, Oxford, 1981)Google Scholar
  21. 21.
    S.N. Andrianov, V.V. Bochkarev, S.A. Moiseev, Eur. Phys. J. 87, 128 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    S.N. Andrianov, V.V. Samartsev, Yu.E. Sheibut, Theor. Math. Phys. 72, 286 (1987)Google Scholar
  23. 23.
    X. Zhang, C. Zou, L. Jiang, H.X. Tang, J. Appl. Phys. 119, 023905 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    D.A. Bozhko, A.A. Serga, P. Clausen, V.I. Vasyuchka, F. Heussner, G.A. Melkov, A. Pomyalov, V.S. L’vov, B. Hillebrands, Nat. Phys. 12, 1057 (2016)CrossRefGoogle Scholar
  25. 25.
    D. Lachance-Quirion, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, Y. Nakamura, arXiv:1610.00839 (2016)
  26. 26.
    S.M. Rezende, Phys. Rev. B 81, 020414 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    R.E. Troncoso, A.S. Nunez, J. Phys.: Condens. Matter 24, 036006 (2012)ADSGoogle Scholar
  28. 28.
    K. Nakata, P. Simon, D. Loss, Phys. Rev. B 92, 014422 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    S.N. Andrianov, S.A. Moiseev, Phys. Rev. A 90, 042303 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sergey N. Andrianov
    • 1
    • 3
  • Sergey A. Moiseev
    • 2
    • 3
  1. 1.Institute of Perspective Research, Tatarstan Republic Academy of SciencesKazanRussia
  2. 2.Kazan Quantum Centre, Kazan National Research UniversityKazanRussia
  3. 3.Kazan Physical-Technical Institute, Russian Academy of SciencesKazanRussia

Personalised recommendations