Advertisement

Assessment of bilayer silicene to probe as quantum spin and valley Hall effect

  • Majeed Ur Rehman
  • Zhenhua Qiao
Regular Article

Abstract

Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.

Keywords

Solid State and Materials 

References

  1. 1.
    K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    G.G. Guzman-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    P. Vogt, P.D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G.L. Lay, Phys. Rev. Lett. 108, 155501 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Leandri, B. Ealet, G.L. Lay, Appl. Phys. Lett. 96, 183102 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    P.E. Padova, C. Quaresima, C. Ottaviani, P.M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, G.L. Lay, Appl. Phys. Lett. 96, 261905 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    K. Takeda, K. Shiraishi, Phys. Rev. B 50, 075131 (1994) Google Scholar
  8. 8.
    S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    C.-C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 107, 076802 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Ding, J. Ni, Appl. Phys. Lett. 95, 083115 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    R. Qin, C.-H. Wang, W. Zhu, Y. Zhang, AIP Adv. 2, 022159 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Ding, Y. Wang, Appl. Phys. Lett. 100, 083102 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    C.H. Pan, Z. Li, C.C. Liu, G. Zhu, Z. Qiao, Y. Yao, Phys. Rev. Lett. 112, 106802 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    Y. Ren, Z. Qiao, Q. Niu, Rep. Prog. Phys. 79, 066501 (2016) ADSCrossRefGoogle Scholar
  15. 15.
    M. Ezawa, New J. Phys. 14, 033003 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    M. Ezawaa, Eur. Phys. J. B 85, 363 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    Y.G. Yao, F. Ye, X.L. Qi, S.C. Zhang, Z. Fang, Phys. Rev. B 75, 041401(R) (2007) ADSCrossRefGoogle Scholar
  19. 19.
    D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    H. Li, L. Sheng, D.Y. Xing, Phys. Rev. Lett. 108, 196806 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    M.U. Rehman, A.A. Abid, Chin. Phys. B 26, 127304 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    G. Tkachova, M. Hentschel, Eur. Phys. J. B 69, 499 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    M.Z. Hasan, S.-Y. Xu, G. Bian, Phys. Scr. T164, 014001 (2015) ADSCrossRefGoogle Scholar
  27. 27.
    T. Neupert, C. Chamon, T. Iadecola, L.H. Santos, C. Mudry, Phys. Scr. T164, 014005 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    D. Pesin, A.H. MacDonald, Nat. Mater. 11, 409 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    D. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 99, 236809 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007) CrossRefGoogle Scholar
  31. 31.
    M. Tahir, A. Manchon, K. Sabeeh, U. Schwingenschlogl, Appl. Phys. Lett. 102, 162412 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    J. Li, K. Chang, Appl. Phys. Lett. 95, 222110 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    M.S. Miao, Q. Yan, C.G. Van de Walle, W.K. Lou, L.L. Li, K. Chang, Phys. Rev. Lett. 109, 186803 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    D. Zhang, W. Lou, M. Miao, S.-C. Zhang, K. Chang, Phys. Rev. Lett. 111, 156402 (2013) ADSCrossRefGoogle Scholar
  35. 35.
    B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Nano Lett. 12, 3507 (2012) ADSCrossRefGoogle Scholar
  36. 36.
    C. Lian, J. Nia, AIP Adv. 3, 052102 (2013) ADSCrossRefGoogle Scholar
  37. 37.
    M. Ezawa, J. Phys. Soc. Jpn 81, 104713 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    H. Da, W. Ding, X. Yan, Appl. Phys. Lett. 110, 141105 (2017) ADSCrossRefGoogle Scholar
  39. 39.
    H. Fu, J. Zhang, Z. Ding, H. Li, S. Menga, Appl. Phys. Lett. 104, 131904 (2014) ADSCrossRefGoogle Scholar
  40. 40.
    M.-M. Zhang, L. Xu, J. Zhang, J. Phys. Condens. Matter 27, 445301 (2015) CrossRefGoogle Scholar
  41. 41.
    C. Lian, J. Ni, AIP Adv. 3, 052102 (2013) ADSCrossRefGoogle Scholar
  42. 42.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    E. Prada, P. San-Jose, L. Brey, H.A. Fertig, Solid State Commun. 151, 10751083 (2011) Google Scholar
  44. 44.
    J. Wang, B. Lian, S.-C. Zhang, Phys. Scr. T164, 014003 (2015) ADSCrossRefGoogle Scholar
  45. 45.
    N.A. Sinitsyn, J.E. Hill, H. Min, J. Sinova, A.H. MacDonald, Phys. Rev. Lett. 97, 106804 (2006) ADSCrossRefGoogle Scholar
  46. 46.
    D.N. Sheng, Z.Y. Weng, L. Sheng, F.D.M. Haldane, Phys. Rev. Lett. 97, 036808 (2006) ADSCrossRefGoogle Scholar
  47. 47.
    Y. Yang, Z. Xu, L. Sheng, B. Wang, D.Y. Xing, D.N. Sheng, Phys. Rev. Lett. 107, 066602 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICQD, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of ChinaHefeiP.R. China
  2. 2.CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations