Stability and band offsets between Si and LaAlO3

Regular Article


The replacement of traditional SiO2 with high-k oxides allows the physical thickness of the gate dielectric to be thinner without the tunneling problem in Si-based metal-oxide-semiconductor field-effect transistors. LaAlO3 appears to be a promising high-k material for use in future ultra large scale integrated devices. In the present paper, the electronic properties of Si/LaAlO3 (001) heterojunctions are investigated by first-principles calculations. We studied the initial adsorption of Si atoms on the LaAlO3 (001) surface, and found that Si atoms preferentially adsorb on top of oxygen atoms at higher coverage. The surface phase diagrams indicate that Si atoms may substitute oxygen atoms at the LaO-terminated surface. The band offsets, electronic density of states, and atomic charges are analyzed for the various Si/LaAlO3 heterojunctions. Our results suggest that the Si/AlO2 interface is suitable for the design of metal oxide semiconductor devices because the valence and conduction band offsets are both larger than 1 eV.


Solid State and Materials 


  1. 1.
    A.I. Kingon, J.-P. Maria, S.K. Streiffer, Nature 406, 1032 (2000)CrossRefGoogle Scholar
  2. 2.
    G.A. Samara, J. Appl. Phys. 68, 4214 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    S.-G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf, G. Lucovsky, J. Appl. Phys. 91, 4500 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    D.O. Klenov, D.G. Schlom, H. Li, S. Stemmer, Jpn J. Appl. Phys. 44, L617 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    B.-E. Park, H. Ishiwara, Appl. Phys. Lett. 82, 1197 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    V.V. Afanas’ev, A. Stesmans, C. Zhao, M. Caymax, T. Heeg, J. Schubert, Y. Jia, D.G. Schlom, G. Lucovsky, Appl. Phys. Lett. 85, 5917 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Y.Y. Mi, Z. Yu, S.J. Wang, P.C. CLim, Y.L. Foo, A.C.H. Huan, C.K. Ong, Appl. Phys. Lett. 90, 181925 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    H. Mortada, M. Derivaz, D. Dentel, H. Srour, J.-L. Bischoff, Surf. Sci. 603, L66 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    H. Mortada, D. Dentel, M. Derivaz, J.-L. Bischoff, E. Denys, R. Moubah, C. Uhlaq-Bouillet, J. Werckmann, J. Cryst. Growth 323, 247 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    J.-L. Bischoff, H. Mortada, D. Dentel, M. Derivaz, C. Ben Azzouz, A. Akremi, C. Chefi, F.M. Morales, M. Herrera, J.M. Mánuel, R. Garcia, M. Diani, Phys. Status Solidi A 209, 657 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    P.W. Peacock, J. Robertson, J. Appl. Phys. 92, 4712 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    J. Robertson, P.W. Peacock, Mater. Res. Soc. Symp. Proc. 786, 23 (2004)Google Scholar
  13. 13.
    J. Robertson, P.W. Peacock, Phys. Status Solidi B 241, 2236 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    C.J. Först, K. Schwarz, P.E. Blöchl, Phys. Rev. Lett. 95, 137602 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Knizhnik, I.M. Iskandarova, A.A. Bagatur’yants, B.V. Potapkin, L.R.C. Fonseca, A. Korkin, Phys. Rev. B 72, 235329 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    I. Devos, P. Boulenc, Appl. Phys. Lett. 90, 072906 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000)CrossRefGoogle Scholar
  18. 18.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    F. El-Mellouhi, E.N. Brothers, M.J. Lucero, I.W. Bulik, G.E. Scuseria, Phys. Rev. B 87, 035107 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S.A. Hayward, F.D. Morrison, S.A.T. Redfern, E.K.H. Salje, J.F. Scott, K.S. Knight, S. Tarantino, A.M. Glazer, V. Shuvaeva, P. Daniel, M. Zhang, M.A. Carpenter, Phys. Rev. B 72, 054110 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    S. Sanna, C. Dues, W.G. Schmidt, F. Timmer, J. Wollschläger, M. Franz, S. Appelfeller, M. Dähne, Phys. Rev. B 93, 195407 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    C.R. Hubbard, H.E. Swanson, F.A. Mauer, J. Appl. Crystallogr. 8, 45 (1975)CrossRefGoogle Scholar
  28. 28.
    J. Witzens, Comput. Phys. Commun. 185, 2221 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    W. Bludau, A. Onton, W. Heinke, J. Appl. Phys. 45, 1846 (1974)ADSCrossRefGoogle Scholar
  30. 30.
    R.F.W. Bader, Chem. Rev. 91, 893 (1991)CrossRefGoogle Scholar
  31. 31.
    J.L. Wang, M. Fu, X.S. Wu, D.M. Bai, J. Appl. Phys. 105, 083526 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    L. Bengtsson, Phys. Rev. B 59, 12301 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    R.A. Evarestov, A.V. Bandura, V.E. Alexandrov, Phys. Status Solidi B 243, 2756 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    J.L. Wang, M.Q. Yuan, G. Tang, H.C. Li, J.T. Zhang, S.D. Guo, J. Appl. Phys. 119, 235304 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    J. Yao, P.B. Merrill, S.S. Perry, D. Marton, J.W. Rabalais, J. Chem. Phys. 108, 1645 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    K. Krishnaswamy, C.E. Dreyer, A. Janotti, C.G. Van de Walle, Phys. Rev. B 90, 235436 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    J. Padilla, D. Vanderbilt, Phys. Rev. B 56, 1625 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    F. Bottin, F. Finocchi, C. Noguera, Phys. Rev. B 68, 035418 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    J. Cheng, A. Navrotsky, J. Mater. Res. 18, 2501 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    Y.A. Mastrikov, E. Heifets, E.A. Kotomin, J. Maier, Surf. Sci. 603, 326 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    A. Asthagiri, C. Niederberger, A.J. Francis, L.M. Porter, P.A. Salvador, D.S. Sholl, Surf. Sci. 537, 134 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    M.Q. Yuan, J.L. Wang, L. Pu, G. Tang, S.D. Guo, Europhys. Lett. 115, 16001 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    C.J. Först, C.R. Ashman, K. Schwarz, P.E. Blochl, Nature 427, 53 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    C.G. Van de Walle, R.M. Martin, Phys. Rev. B 34, 5621 (1986)ADSCrossRefGoogle Scholar
  45. 45.
    X. Zhang, A.A. Demkov, H. Li, X. Hu, Y. Wei, J. Kulik, Phys. Rev. B 68, 125323 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    J.W. Park, D.F. Bogorin, C. Cen, D.A. Felker, Y. Zhang, C.T. Nelson, C.W. Bark, C.M. Folkman, X.Q. Pan, M.S. Rzchowski, J. Levy, C.B. Eom, Nature Commun. 1, 94 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Physics, China University of Mining and TechnologyXuzhouP.R. China
  2. 2.School of Physics, The University of SydneySydneyAustralia
  3. 3.School of Mathematics, China University of Mining and TechnologyXuzhouP.R. China
  4. 4.School of Chemical Engineering and Technology, China University of Mining and TechnologyXuzhouP.R. China

Personalised recommendations