Advertisement

Stochastic resonance in a harmonic oscillator subject to random mass and periodically modulated noise

Regular Article

Abstract

In many practical systems, the periodic driven force and noise are introduced multiplicatively. However, the corresponding researches only focus on the first order moment of the system and its stochastic resonance phenomena. This paper investigates a harmonic oscillator subject to random mass and periodically modulated noise. Using Shapiro-Loginov formula and the Laplace transformation technique, the analytic expressions of the first-order and second-order moment are obtained. According to the analytic expressions, we find that although the first-order moment is always zero but second-order moment is periodic which is different from other harmonic oscillators investigated. Furthermore, we find the amplitude and average of second-order moment have a non-monotonic behavior on the frequency of the input signal, noise parameters and other system parameters. Finally, the numerical simulations are presented to verify the analytical results.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R Benzi, A Sutera, A Vulpiani, J. Phys. A 14, L453 (1981) ADSCrossRefGoogle Scholar
  2. 2.
    E. Heinsalu, M. Patriarca, F. Marchesoni, Eur. Phys. J. B 69, 19 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    D. Valenti, A. Fiasconaro, B. Spagnolo, Physica A 331, 477 (2004) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    W.R. Zhong, Y.Z. Shao, Z.H. He, Phys. Rev. E 73, 060902 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    O. Rosso, C. Masoller, Eur. Phys. J. B 69, 37 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    R.N. Mantegna, B. Spagnolo, L. Testa, M. Trapanese, J. Appl. Phys. 97, 10E519 (2005) CrossRefGoogle Scholar
  7. 7.
    R.N. Mantegna, B. Spagnolo, Phys. Rev. E 49, R1792 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    M. Gitterman, I. Shapiro, J. Stat. Phys. 144, 139 (2011) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Zhong, L. Zhang, H. Wang, H. Ma, M.-K. Luo, Nonlinear Dyn. 89, 1327 (2017) CrossRefGoogle Scholar
  10. 10.
    Hu Gang, T. Ditzinger, C.Z. Ning, H. Haken, Phys. Rev. Lett. 71, 807 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    C.J. Tessone, C.R. Mirasso, R. Toral, J.D. Gunton, Phys. Rev. Lett. 97, 194101 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    M. Gitterman, Physica A 352, 309 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    T. Yu, L. Zhang, M.-K. Luo, Phys. Scr. 88, 045008 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    S. Zhong, H. Ma, H. Peng, L. Zhang, Nonlinear Dyn. 82, 535 (2015) CrossRefGoogle Scholar
  15. 15.
    Y. Tian, L. Huang, M.-K. Luo, Acta Phys. Sin. 62, 050502 (2013) Google Scholar
  16. 16.
    L. Zhang, S.-C. Zhong, H. Peng, M.-K. Luo, Acta Phys. Sin. 61, 130503 (2012) Google Scholar
  17. 17.
    B. Yang, X. Zhang, L. Zhang, M.-K. Luo, Phys. Rev. E 94, 022119 (2016) ADSCrossRefGoogle Scholar
  18. 18.
    S. Jiang, F. Guo, Y. Zhou, T. Gu, Physica A 375, 483 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    G.-T. He, Y. Tian, Y. Wang, J. Stat. Mech. 2013, P09026 (2013) CrossRefGoogle Scholar
  20. 20.
    G.-T. He, Y. Tian, M.-K. Luo, J. Stat. Mech. 2014, P05018 (2014) CrossRefGoogle Scholar
  21. 21.
    G.-T. He, R.-Z. Luo, M.-K. Luo, Phys. Scr. 88, 065009 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    M. Gitterman, Physica A 395, 11 (2014) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    N.V. Agudov, A.V. Krichigin, D. Valenti, B. Spagnolo, Phys. Rev. E 81, 051123 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    J. Blum, G. Wurm, S. Kempf, T. Poppe, Phys. Rev. Lett. 85, 2426 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    A.T. Pérez, D. Saville, C. Soria, Europhys. Lett. 55, 425 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993) ADSCrossRefGoogle Scholar
  27. 27.
    M. Ausloos, R. Lambiotte, Phys. Rev. E 73, 011105 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    T. Yu, L. Zhang, M.-K. Luo, Acta Phys. Sin. 62, 120504 (2013) Google Scholar
  29. 29.
    T. Yu, M.-K. Luo, Y. Hua, Acta Phys. Sin. 62, 210503 (2013) Google Scholar
  30. 30.
    L.-F. Lin, C. Chen, S.-C. Zhong, H.-Q. Wang J. Stat. Phys. 160, 497 (2015) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Gitterman, Physica A 391, 5343 (2012) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Gitterman, J. Mod. Phys. 2, 1136 (2011) CrossRefGoogle Scholar
  33. 33.
    M. Gitterman, V. I. Klyatskin, Phys. Rev. E 81, 051139 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    M.I. Dykman, D.G. Luchinsky, P.V.E. McClintock, N.D. Stein, Phys. Rev. A 46, R1713 (1992) ADSCrossRefGoogle Scholar
  35. 35.
    F. Guo, C.-Y. Zhu, X.-F. Cheng, H. Li, Physica A 459, 86 (2016) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    C. Broeck, J. Stat. Phys. 31, 467 (1983) ADSCrossRefGoogle Scholar
  37. 37.
    V.E. Shapiro, V.M. Loginov, Physica A 91, 563 (1978) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. Lett. 74, 1052 (1995) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wang-Hao Dai
    • 1
  • Rui-Bin Ren
    • 1
  • Mao-Kang Luo
    • 1
  • Ke Deng
    • 1
  1. 1.College of Mathematics, Sichuan UniversityChengduP.R. China

Personalised recommendations