Mott-Hubbard transition in the mass-imbalanced Hubbard model

  • Marie-Therese PhilippEmail author
  • Markus Wallerberger
  • Patrik Gunacker
  • Karsten Held
Open Access
Regular Article


The mass-imbalanced Hubbard model represents a continuous evolution from the Hubbard to the Falicov-Kimball model. We employ dynamical mean field theory and study the paramagnetic metal-insulator transition, which has a very different nature for the two limiting models. Our results indicate that the metal-insulator transition rather resembles that of the Hubbard model as soon as a tiny hopping between the more localized fermions is switched on. At low temperatures we observe a first-order metal-insulator transition and a three peak structure. The width of the central peak is the same for the more and less mobile fermions when approaching the phase transition, which agrees with our expectation of a common Kondo temperature and phase transition for the two species.


Solid State and Materials 


  1. 1.
    F. Gebhard, Metal-Insulator Transition (Springer-Verlag, Berlin, 1997)Google Scholar
  2. 2.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    J. Hubbard, Proc. R. Soc. Lond. Ser. A 276, 238 (1963)ADSCrossRefGoogle Scholar
  4. 4.
    P.G.J. van Dongen, C. Leinung, Ann. Phys. (Leipzig) 509, 45 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    L.M. Falicov, J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    J.K. Freericks, V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    P. Hansmann, A. Toschi, G. Sangiovanni, T. Saha-Dasgupta, S. Lupi, M. Marsi, K. Held, Phys. Status Solidi (b) 250, 1251 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    M. Taglieber, A.-C. Voigt, T. Aoki, T.W. Hänsch, K. Dieckmann, Phys. Rev. Lett. 100, 010401 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    G. Jotzu, M. Messer, F. Görg, D. Greif, R. Desbuquois, T. Esslinger, Phys. Rev. Lett. 115, 073002 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A. Sotnikov, D. Cocks, W. Hofstetter, Phys. Rev. Lett. 109, 065301 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Y.-H. Liu, L. Wang, Phys. Rev. B 92, 235129 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    T. Dao, M. Ferrero, P.S. Cornaglia, M. Capone, Phys. Rev. A 85, 013606 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    A. Liebsch, Europhys. Lett. 63, 97 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    A. Koga, N. Kawakami, T.M. Rice, M. Sigrist, Phys. Rev. Lett. 92, 216402 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    S. Biermann, L. de Medici, A. Georges, Phys. Rev. Lett. 95, 206401 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    R. Arita, K. Held, Phys. Rev. B 72, 201102(R) (2005)ADSCrossRefGoogle Scholar
  19. 19.
    C. Knecht, N. Blümer, P.G.J. van Dongen, Phys. Rev. B 72, 081103(R) (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M. Ferrero, F. Becca, M. Fabrizio, M. Capone, Phys. Rev. B 72, 205126 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    N. Parragh, A. Toschi, K. Held, G. Sangiovanni, Phys. Rev. B 86, 155158 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    M. Wallerberger, Ph.D. thesis, Technische Universität Wien, 2016Google Scholar
  23. 23.
    P. Werner, A.J. Millis, Phys. Rev. B 74, 155107 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    N. Blümer, Ph.D. thesis, Universität Augsburg, 2003Google Scholar
  27. 27.
    M. Karski, C. Raas, G.S. Uhrig, Phys. Rev. B 72, 113110 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    M. Karski, C. Raas, G.S. Uhrig, Phys. Rev. B 77, 075116 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    M. Granath, H.U.R. Strand, Phys. Rev. B 86, 115111 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Lu, M. Höppner, O. Gunnarsson, M.W. Haverkort, Phys. Rev. B 90, 085102 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    M. Ganahl, P. Thunström, F. Verstraete, K. Held, H.G. Evertz, Phys. Rev. B 90, 045144 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    M. Ganahl, M. Aichhorn, P. Thunström, K. Held, H.G. Evertz, F. Verstraete, Phys. Rev. B 92, 155132 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    P.W. Anderson, J. Phys. C: Solid State Phys. 3, 2436 (1970)ADSCrossRefGoogle Scholar
  34. 34.
    A.C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism (Cambridge University Press, Cambridge, 1993), Vol. 2Google Scholar
  35. 35.
    K. Held, R. Peters, A. Toschi, Phys. Rev. Lett. 110, 246402 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    J. Schlipf, M. Jarrell, P.G.J. van Dongen, N. Blümer, S. Kehrein, Th. Pruschke, D. Vollhardt, Phys. Rev. Lett. 82, 4890 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    M.J. Rozenberg, R. Chitra, G. Kotliar, Phys. Rev. Lett. 83, 3498 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    A.E. Antipov, E. Gull, S. Kirchner, Phys. Rev. Lett. 112, 226401 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    G. Rohringer, A. Toschi, A.A. Katanin, K. Held, Phys. Rev. Lett. 107, 256402 (2011)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of Solid State Physics, TU WienViennaAustria

Personalised recommendations