The effects of temperature on the formation and stability of bipolarons in conjugated polymers

Regular Article

Abstract

Within the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model modified to include thermal effects and electron-electron interactions, the transition from polaron to bipolaron and the formation of bipolaron induced by injecting charges are separately simulated using a nonadiabatic evolution method. For the transition process, it is found that with the temperature effects taken into account, two separate polarons with the same charge and antiparallel spins can recombine into a bipolaron. The results show that with the temperature increasing, the time taken for the recombination of two polarons decreases. The effects of different distances between the polarons are also numerically simulated. For the bipolaron formation, we investigate the evolution of two charges injected into a polymer chain with the thermal effects. We find that the bipolaron is always quickly formed and its dynamical stability is less sensitive to the temperature change. Thermal effects can only affect the degree of the charges localization.

Keywords

Solid State and Materials 

References

  1. 1.
    Z.B. Wu, J.J. Luo, N. Sun, L.P. Zhu, H.D. Sun, L. Yu, D.Z. Yang, X.F. Qiao, J.S. Chen, C.L. Yang, D.G. Ma, Adv. Funct. Mater. 26, 3306 (2016)CrossRefGoogle Scholar
  2. 2.
    X.L. Li, G.Z. Xie, M. Liu, D.C. Chen, X.Y. Cai, J.B. Peng, Y. Cao, S.J. Su, Adv. Mater. 28, 4614 (2016)CrossRefGoogle Scholar
  3. 3.
    B.Q. Liu, H. Nie, X.B. Zhou, S.B. Hu, D.X. Luo, D.Y. Gao, J.H. Zou, M. Xu, L. Wang, Z.J. Zhao, A.J. Qin, J.B. Peng, H.L. Ning, Y. Cao, B.Z. Tang, Adv. Funct. Mater. 26, 776 (2016)CrossRefGoogle Scholar
  4. 4.
    Q.S. Zhang, D. Tsang, H. Kuwabara, Y. Hatae, B. Li, T. Takahashi, S.Y. Lee, T. Yasuda, C. Adachi, Adv. Mater. 27, 2096 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Tao, K. Yuan, T. Chen, P. Xu, H.H. Li, R.F. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 26, 7931 (2014)CrossRefGoogle Scholar
  6. 6.
    Z. Sun, Y. Li, K. Gao, D.S. Liu, Z. An, S.J. Xie, Org. Electron. 11, 279 (2010)CrossRefGoogle Scholar
  7. 7.
    B. Di, Y. Meng, Y.D. Wang, X.J. Liu, Z. An, J. Phys. Chem. B 115, 9339 (2011)CrossRefGoogle Scholar
  8. 8.
    Y.D. Wang, B. Di, Y. Meng, X.J. Liu, Z. An, Org. Electron. 13, 1178 (2012)CrossRefGoogle Scholar
  9. 9.
    L.A. Ribeiro, W.F. da Cunha, A.L. de A. Fonseca, R. Gargano, G.M. e Silva, Chem. Phys. Lett. 614, 151 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J.H. Kaufman, N. Colaneri, J.C. Scott, G.B. Street, Phys. Rev. Lett. 53, 1005 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    D. Steinmüller, M.G. Ramsey, F.P. Netzer, Phys. Rev. B 47, 13323 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    M. Lögdlund, P. Dannetun, C. Frederiksson, W.R. Salaneck, J. Brédas, Synth. Met. 67, 141 (1994)CrossRefGoogle Scholar
  13. 13.
    G. Iucci, K. Xing, M. Lögdlund, M. Fahlmann, W.R. Salaneck, Chem. Phys. Lett. 244, 139 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    B. Di, Y. Meng, Y.D. Wang, X.J. Liu, Z. An, J. Phys. Chem. B 115, 964 (2011)CrossRefGoogle Scholar
  15. 15.
    Y.H. Yan, Z. An, C.Q. Wu, K. Nasu, Eur. Phys. J. B 48, 501 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    H. Zhao, Z.W. Liu, S.B. Chen, L.A. Chang, Phys. B 450, 111 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    P. Ingenhoven, R. Egger, U. Zulicke, J. Phys.: Condens. Matter 21, 415302 (2009)Google Scholar
  18. 18.
    M.P. Lima, G.M. e Silva, Phys. Rev. B 74, 224304 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    S. Irle, H. Lischka, J. Chem. Phys. 107, 3021 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    G.M. e Silva, Phys. Rev. B 61, 10777 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    L.A. Ribeiro, W.F. da Cunha, P.H. de O. Neto, R. Gargano, G.M. e Silva, New J. Chem. 37, 2829 (2013)CrossRefGoogle Scholar
  22. 22.
    G. Cík, F. Sersen, L. Dlhán, Synth. Met. 151, 124 (2005)CrossRefGoogle Scholar
  23. 23.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B 22, 2099 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    S.A. Brazovskii, N.N. Kirova, JETP Lett. 33, 4 (1981)ADSGoogle Scholar
  26. 26.
    J. Hubbard, Proc. R. Soc. London Ser. A 276, 238 (1963)ADSCrossRefGoogle Scholar
  27. 27.
    A. Troisi, D.L. Cheung, J. Chem. Phys. 131, 014703 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    L.F. Roncaratti, R. Gargano, G.M. e Silva, J. Phys. Chem. A 113, 14591 (2009)CrossRefGoogle Scholar
  29. 29.
    Z. Ivic, S. Zekovic, D. Kostic, Phys. Rev. E 65, 021911 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Z. An, C.Q. Wu, X. Sun, Phys. Rev. Lett. 93, 216407 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Meng, B. Di, X.J. Liu, Z. An, C.Q. Wu, J. Chem. Phys. 128, 184903 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    A.J. Heeger, S. Kivelson, J.R. Schreiffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    S.A. Brazovskii, N. Kirova, S. Matveenko, Sov. Phys. JETP 59, 434 (1984)Google Scholar
  34. 34.
    S. Brazovskii, N. Kirova, in Sovjet Scientific Reviews, Sec. A, Phys. Rev., edited by I.M. Khalatnikov (Harwood Acad. Publ., 1984)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physics and Electromagnetic Transport Materials LaboratoryXingtai UniversityXingtaiP.R. China
  2. 2.College of Information Science and Engineering, Hebei Engineering Research Center for Information Technology in Population Health, Hebei North UniversityZhangjiakouP.R. China
  3. 3.College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal UniversityShijiazhuangP.R. China

Personalised recommendations