Enhancing energy harvesting by coupling monostable oscillators

  • Julián I. Peña Rosselló
  • Horacio S. Wio
  • Roberto R. Deza
  • Peter Hänggi
Regular Article

Abstract

The performance of a ring of linearly coupled, monostable nonlinear oscillators is optimized towards its goal of acting as energy harvester – through piezoelectric transduction – of mesoscopic fluctuations, which are modeled as Ornstein-Uhlenbeck noises. For a single oscillator, the maximum output voltage and overall efficiency are attained for a soft piecewise-linear potential (providing a weak attractive constant force) but they are still fairly large for a harmonic potential. When several harmonic springs are linearly and bidirectionally coupled to form a ring, it is found that counter-phase coupling can largely improve the performance while in-phase coupling worsens it. Moreover, it turns out that few (two or three) coupled units perform better than more.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L. Mateu, F. Moll, Review of energy harvesting techniques and applications for microelectronics (keynote address), in Proc. SPIE 5837, VLSI Circuits and Systems II (2005), p. 359Google Scholar
  2. 2.
    R.J.M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, Solid-St. Electron. 53, 684 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    F. Yildiz, J. Technol. Studies 35, 40 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Erturk, Ph.D. thesis, Virginia Polytechnic Institute and State University, 2009Google Scholar
  5. 5.
    H.A. Sodano, D.J. Inman, G. Park, J. Intell. Mater. Syst. Struct. 16, 799 (2005)CrossRefGoogle Scholar
  6. 6.
    L. Tang, Y. Yang, C.K. Soh, J. Intell. Mater. Syst. Struct. 21, 1867 (2010)CrossRefGoogle Scholar
  7. 7.
    L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    L. Gammaitoni, I. Neri, H. Vocca, Chem. Phys. Lett. 375, 435 (2010)Google Scholar
  10. 10.
    G. Litak, E. Manoach, Eur. Phys. J. Special Topics 222, 1479 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    G. Litak, E. Manoach, E. Halvorsen, Eur. Phys. J. Special Topics 224, 671 (2015)CrossRefGoogle Scholar
  12. 12.
    J.I. Deza, R.R. Deza, H.S. Wio, Europhys. Lett. 100, 38001 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J.I. Peña Rosselló, J.I. Deza, H.S. Wio, R.R. Deza, Anales AFA 25, 54 (2014)Google Scholar
  14. 14.
    J.I. Peña Rosselló, R.R. Deza, J.I. Deza, H.S. Wio, Papers in Physics 7, 070014 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    A.R. Bulsara, L. Gammaitoni, Phys. Today 49, 39 (1996)CrossRefGoogle Scholar
  17. 17.
    J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara, Phys. Rev. Lett. 75, 3 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara, Phys. Rev. E 53, 2081 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    H.S. Wio, S. Bouzat, B. von Haeften, Physica A 306, 140 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    H.S. Wio, J.A. Revelli, M.A. Rodríguez, R.R. Deza, G.G. Izús, Eur. Phys. J. B 69, 71 (2009)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    B. von Haeften, G.G. Izús, H.S. Wio, Phys. Rev. E 72, 021101 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    H.S. Wio, R.R. Deza, J.M. López, An Introduction to Stochastic Processes and Nonequilibrium Statistical Physics, revised edn. (World Scientific, Singapore, 2012)Google Scholar
  23. 23.
    J.I. Deza, R.R. Deza, H.S. Wio, Nanoenergy Lett. 6, 29 (2013)Google Scholar
  24. 24.
    P. Hänggi, M. Inchiosa, D. Fogliatti, A. Bulsara, Phys. Rev. E 62, 6155 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    J. Casado-Pascual, J. Gómez-Ordoñez, M. Morillo, P. Hänggi, Phys. Rev. E 67, 036109 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    V. Méndez, D. Campos, W. Horsthemke, Phys. Rev. E 88, 022124 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    M. Cross, H. Greenside, Pattern formation and dynamics in nonequilibrium systems (CUP, Cambridge, 2009)Google Scholar
  29. 29.
    H.S. Wio, Int. J. Bifurc. Chaos 19, 2813 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    N.W. Ashcroft, D.N. Mermin, Solid state physics (Harcourt, Orlando, FL, 1976)Google Scholar
  31. 31.
    P. Dayan, L.F. Abbott, Theoretical neuroscience (MIT Press, Cambridge, MA, 2001)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Julián I. Peña Rosselló
    • 1
  • Horacio S. Wio
    • 2
  • Roberto R. Deza
    • 1
  • Peter Hänggi
    • 3
    • 4
  1. 1.Instituto de Investigaciones Físicas de Mar del Plata (IFIMARAYL Mar del PlataArgentina
  2. 2.Instituto de Física de Cantabria (IFCASantanderSpain
  3. 3.Universität Augsburg, Institut für Physik, Universitätstrasse 1AugsburgGermany
  4. 4.Nanosystems Initiative Munich, Schellingstrasse 4MünchenGermany

Personalised recommendations