Numerical analysis of electronic conductivity in graphene with resonant adsorbates: comparison of monolayer and Bernal bilayer

  • Ahmed Missaoui
  • Jouda Jemaa Khabthani
  • Nejm-Eddine Jaidane
  • Didier Mayou
  • Guy Trambly de Laissardière
Regular Article


We describe the electronic conductivity, as a function of the Fermi energy, in the Bernal bilayer graphene (BLG) in presence of a random distribution of vacancies that simulate resonant adsorbates. We compare it to monolayer (MLG) with the same defect concentrations. These transport properties are related to the values of fundamental length scales such as the elastic mean free path Le, the localization length ξ and the inelastic mean free path Li. Usually the later, which reflect the effect of inelastic scattering by phonons, strongly depends on temperature T. In BLG an additional characteristic distance l1 exists which is the typical traveling distance between two interlayer hopping events. We find that when the concentration of defects is smaller than 1%–2%, one has l1Leξ and the BLG has transport properties that differ from those of the MLG independently of Li(T). Whereas for larger concentration of defects Le<l1ξ, and depending on Li(T), the transport in the BLG can be equivalent (or not) to that of two decoupled MLG. We compare two tight-binding model Hamiltonians with and without hopping beyond the nearest neighbors.


Solid State and Materials 


  1. 1.
    P.R. Wallace, Phys. Rev. 71, 622 (1947)ADSCrossRefGoogle Scholar
  2. 2.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 9 (2006)CrossRefGoogle Scholar
  4. 4.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    S. Latil, L. Henrard, Phys. Rev. Lett. 97, 036803 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    F. Zhang, B. Sahu, H. Min, A.H. MacDonald, Phys. Rev. B 82, 035409 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    F. Varchon, P. Mallet, J.-Y. Veuillen, L. Magaud, Phys. Rev. B 77, 235412 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    I. Brihuega, P. Mallet, C. Bena, S. Bose, C. Michaelis, L. Vitali, F. Varchon, L. Magaud, K. Kern, J.Y. Veuillen, Phys. Rev. Lett. 101, 206802 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    E. McCann, M. Koshino, Rep. Prog. Phys. 76, 056503 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S. Ulstrup, J.C. Johannsen, F. Cilento, J.A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P.D.C. King, P. Hofmann, Phys. Rev. Lett. 112, 257401 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    V.M. Pereira, J.M.B.L. dos Santos, A.H.C. Neto, Phys. Rev. B 77, 115109 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Robinson, H. Schomerus, L. Oroszlány, V.I. Falko, Phys. Rev. Lett. 101, 196803 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S. Yuan, H. De Raedt, M.I. Katsnelson, Phys. Rev. B 82, 115448 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    S. Yuan, T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 109, 156601 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Lherbier, S.M.-M. Dubois, X. Declerck, Y.-M. Niquet, S. Roche, J.-C. Charlier, Phys. Rev. B 86, 075402 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    S. Roche, N. Leconte, F. Ortmann, A. Lherbier, D. Soriano, J.-C. Charlier, Solid States Commun. 152, 1404 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    A. Cresti, F. Ortmann, T. Louvet, D. Van Tuan, S. Roche, Phys. Rev. Lett. 110, 196601 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    A. Kretinin, G.L. Yu, R. Jalil, Y. Cao, F. Withers, A. Mishchenko, M.I. Katsnelson, K.S. Novoselov, A.K. Geim, F. Guinea, Phys. Rev. B 88, 165427 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    G. Trambly de Laissardière, D. Mayou, Mod. Phys. Lett. B 25, 1019 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    G. Trambly de Laissardière, D. Mayou, Phys. Rev. Lett. 111, 146601 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    G. Trambly de Laissardière, D. Mayou, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 015007 (2014)ADSGoogle Scholar
  25. 25.
    P.-L. Zhao, S. Yuan, M.I. Katsnelson, H. De Raedt, Phys. Rev. B 92, 045437 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    M. Koshino, T. Ando, Phys. Rev. B 73, 245403 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    S. Adam, S. Das Sarma, Phys. Rev. B 77, 115436 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    M. Koshino, New J. Phys. 11, 095010 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S. Yuan, H. De Raedt, M.I. Katsnelson, Phys. Rev. B 82, 235409 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    J.W. González, H. Santos, M. Pacheco, L. Chico, L. Brey, Phys. Rev. B 81, 195406 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    A. Ferreira, J. Viana-Gomes, J. Nilsson, E.R. Mucciolo, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. B 83, 165402 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    D. Van Tuan, S. Roche, Phys. Rev. B 93, 041403 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    R.R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen, A.V. Krasheninnikov, T. Thomson, A.K. Geim, I.V. Grigorieva, Nat. Phys. 8, 199 (2012)CrossRefGoogle Scholar
  34. 34.
    W.L. Scopel, W.S. Paz, J.C.C. Freitas, Sol. Stat. Commun. 240, 5 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    I. Snyman, C.W.J. Beenakker, Phys. Rev. B 75, 045322 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    G. Trambly de Laissardière, D. Mayou, L. Magaud, Phys. Rev. B 86, 125413 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    G. Trambly de Laissardière, D. Mayou, L. Magaud, Nano Lett. 10, 804 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    G. Trambly de Laissardière, O.F. Namarvar, D. Mayou, L. Magaud, Phys. Rev. B 93, 235135 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    G. Trambly de Laissardière, D. Mayou, C. R. Physique 15, 70 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)ADSCrossRefGoogle Scholar
  41. 41.
    P.W. Brouwer, E. Racine, A. Furusaki, Y. Hatsugai, Y. Morita, C. Mudry, Phys. Rev. B 66, 014204 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    D. Mayou, Europhys. Lett. 6, 549 (1988)ADSCrossRefGoogle Scholar
  43. 43.
    D. Mayou, S.N. Khanna, J. Phys. I France 5, 1199 (1995)CrossRefGoogle Scholar
  44. 44.
    S. Roche, D. Mayou, Phys. Rev. Lett. 79, 2518 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    S. Roche, D. Mayou, Phys. Rev. B 60, 322 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    F. Triozon, J. Vidal, R. Mosseri, D. Mayou, Phys. Rev. B 65, 220202 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ahmed Missaoui
    • 1
  • Jouda Jemaa Khabthani
    • 2
  • Nejm-Eddine Jaidane
    • 1
  • Didier Mayou
    • 3
    • 4
  • Guy Trambly de Laissardière
    • 5
  1. 1.Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus UniversitaireTunisTunisia
  2. 2.Laboratoire de Physique de la matière condensée, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus UniversitaireTunisTunisia
  3. 3.Université Grenoble AlpesGrenobleFrance
  4. 4.CNRSGrenobleFrance
  5. 5.Laboratoire de Physique théorique et Modélisation, CNRS and Université de Cergy-PontoiseCergy-PontoiseFrance

Personalised recommendations