First principle calculation of accurate native defect levels in CaF2

  • Abdelaziz M. Ibraheem
  • Mohammed A.H. Khalafalla
  • Mohamed H. Eisa
Regular Article

Abstract

We report on the first principle density functional calculation of the charge transition levels of native defects (vacancies and interstitials) in CaF2 structure. The transition level was defined as the Fermi level where two charge states of given defect have the same formation energy. The common error in the band gap inherited to semiclocal density functional has been accounted for by incorporating the hybrid density functional method, leading to correct placement of the transition levels within the band gap. The band gap size from hybrid calculation has been validated using the full potential, Linearized Augmented Planewave method with the Modified-Becke-Johnson exchange potential. Prior to level calculations, we ensured that an agreement between the formation energies from small (95–97 atoms) and large (323–325 atoms) supercells was achieved after applying the Makov-Payne correction method. Our calculated transition level for the anion vacancy was 2.97 eV below the conduction band, agreeing with the experimental optical absorption band at 3.3 eV associated with the electron transition from the ground state F-center to the conduction band in CaF2.

Keywords

Computational Methods 

References

  1. 1.
    A. Puchina et al., Solid State Commun. 106, 285 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    M. Verstraete, X. Gonze, Phys. Rev. B 68, 195123 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    G.W. Rubloff, Phys. Rev. B 5, 662 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    K. Sun et al., J. Mater. Sci.: Mater. Electron. 26, 4438 (2015)ADSGoogle Scholar
  5. 5.
    L. Dressler, R. Rauch, R. Reimann, Crystal Res. Technol. 27, 413 (1992)CrossRefGoogle Scholar
  6. 6.
    Y. Shimizu et al., Phys. Lett. B 633, 195 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    H. Shi, R. Jia, R. Eglitis, Comput. Mater. Sci. 89, 247 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Shi et al., J. Phys. Chem. C 116, 4832 (2012)CrossRefGoogle Scholar
  9. 9.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    A. Alkauskas, P. Broqvist, A. Pasquarello, Phys. Rev. Lett. 101, 046405 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    P. Blaha et al., Wien2k. An augmented plane wave + local orbitals program for calculating crystal properties, 2001Google Scholar
  14. 14.
    P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)Google Scholar
  15. 15.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    C. Freysoldt et al., Rev. Mod. Phys. 86, 253 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    M. Leslie, N. Gillan, J. Phys. C 18, 973 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    G. Makov, M. Payne, Phys. Rev. B 51, 4014 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    C. Castleton, A. Höglund, S. Mirbt, Modell. Simul. Mater. Sci. Eng. 17, 084003 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    D.A. Drabold, S.K. Estreicher, Theory of defects in semiconductors (Springer, 2007)Google Scholar
  21. 21.
    C. Gaire et al., Nanotechnology 21, 445701 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Reimers, Computational methods for large systems: electronic structure approaches for biotechnology and nanotechnology (John Wiley & Sons, 2011)Google Scholar
  23. 23.
    F. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)ADSCrossRefGoogle Scholar
  24. 24.
    A. Tressaud, Functionalized inorganic fluorides: synthesis, characterization and properties of nanostructured solids (John Wiley & Sons, 2010)Google Scholar
  25. 25.
    P.W.O. Nyawere et al., Solid State Commun. 179, 25 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    M. Topsakal, R. Wentzcovitch, Comput. Mater. Sci. 95, 263 (2014)CrossRefGoogle Scholar
  28. 28.
    C.G. Van de Walle, J. Neugebauer, J. Appl. Phys. 95, 3851 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    A. Seidl et al., Phys. Rev. B 53, 3764 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    S. Lany, A. Zunger, Phys. Rev. B 78, 235104 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    H. Shi, R. Eglitis, G. Borstel, Phys. Rev. B 72, 045109 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Abdelaziz M. Ibraheem
    • 1
  • Mohammed A.H. Khalafalla
    • 2
  • Mohamed H. Eisa
    • 1
    • 3
  1. 1.Department of PhysicsCollege of Science, Sudan University of Science and TechnologyKhartoumSudan
  2. 2.Department of PhysicsCollege of Science, Taibah UniversityYanbuSaudi Arabia
  3. 3.Department of PhysicsCollege of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia

Personalised recommendations