First principle calculation of accurate native defect levels in CaF2

  • Abdelaziz M. Ibraheem
  • Mohammed A.H. Khalafalla
  • Mohamed H. Eisa
Regular Article

DOI: 10.1140/epjb/e2017-70591-0

Cite this article as:
Ibraheem, A.M., Khalafalla, M.A. & Eisa, M.H. Eur. Phys. J. B (2017) 90: 42. doi:10.1140/epjb/e2017-70591-0


We report on the first principle density functional calculation of the charge transition levels of native defects (vacancies and interstitials) in CaF2 structure. The transition level was defined as the Fermi level where two charge states of given defect have the same formation energy. The common error in the band gap inherited to semiclocal density functional has been accounted for by incorporating the hybrid density functional method, leading to correct placement of the transition levels within the band gap. The band gap size from hybrid calculation has been validated using the full potential, Linearized Augmented Planewave method with the Modified-Becke-Johnson exchange potential. Prior to level calculations, we ensured that an agreement between the formation energies from small (95–97 atoms) and large (323–325 atoms) supercells was achieved after applying the Makov-Payne correction method. Our calculated transition level for the anion vacancy was 2.97 eV below the conduction band, agreeing with the experimental optical absorption band at 3.3 eV associated with the electron transition from the ground state F-center to the conduction band in CaF2.


Computational Methods 

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Abdelaziz M. Ibraheem
    • 1
  • Mohammed A.H. Khalafalla
    • 2
  • Mohamed H. Eisa
    • 1
    • 3
  1. 1.Department of PhysicsCollege of Science, Sudan University of Science and TechnologyKhartoumSudan
  2. 2.Department of PhysicsCollege of Science, Taibah UniversityYanbuSaudi Arabia
  3. 3.Department of PhysicsCollege of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia

Personalised recommendations