Individual-collective crossover driven by particle size in dense assemblies of superparamagnetic nanoparticles

  • Karl Ridier
  • Béatrice Gillon
  • Grégory Chaboussant
  • Laure Catala
  • Sandra Mazérat
  • Eric Rivière
  • Talal Mallah
Regular Article
  • 90 Downloads

Abstract

Prussian blue analogues (PBA) ferromagnetic nanoparticles Cs I x Ni II [Cr III (CN)6 ] z ·3(H2O) embedded in CTA+ (cetyltrimethylammonium) matrix have been investigated by magnetometry and magnetic small-angle neutron scattering (SANS). Choosing particle sizes (diameter D = 4.8 and 8.6 nm) well below the single-domain radius and comparable volume fraction of particle, we show that the expected superparamagnetic regime for weakly anisotropic isolated magnetic particles is drastically affected due to the interplay of surface/volume anisotropies and dipolar interactions. For the smallest particles (D = 4.8 nm), magnetocrystalline anisotropy is enhanced by surface spins and drives the system into a regime of ferromagnetically correlated clusters characterized by a temperature-dependent magnetic correlation length L mag which is experimentally accessible using magnetic SANS. For D = 8.6 nm particles, a superparamagnetic regime is recovered in a wide temperature range. We propose a model of interacting single-domain particles with axial anisotropy that accounts quantitatively for the observed behaviors in both magnetic regimes.

Keywords

Mesoscopic and Nanoscale Systems 

Supplementary material

References

  1. 1.
    S.A. Majetich, Y. Jin, Science 284, 470 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003)ADSGoogle Scholar
  3. 3.
    S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Noguès, Nature 423, 850 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    R.M. Lacroix, D. Don, S. Sun, Curr. Topics Med. Chem. 10, 1184 (2010)CrossRefGoogle Scholar
  6. 6.
    C. Kumar, F. Mohammad, Adv. Drug. Deliv. Rev. 63, 789 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Laurent et al., Adv. Colloids Interface Sci. 166, 8 (2011)CrossRefGoogle Scholar
  8. 8.
    D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 42, 268 (2003)CrossRefGoogle Scholar
  9. 9.
    J.-N. Rebilly, T. Mallah, in Single-Molecule Magnets and Related Phenomena, Structure and Bonding (Springer-Verlag, Berlin, Heidelberg, 2006), Vol. 122, p. 103Google Scholar
  10. 10.
    D.N. Woodruff, R.E.P. Winpenny, R.A. Layfield, Chem. Rev. 113, 5110 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M.A. Novak, W.C. Nunes, Phys. Rev. B 64, 144420 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    E. Amstad, M. Textor, R. Reimhult, Nanoscale 3, 2819 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao, S.H. Sun, Adv. Mater. 22, 2729 (2010)CrossRefGoogle Scholar
  14. 14.
    J.F. Löffler, H.-B. Braun, W. Wagner, Phys. Rev. Lett. 85, 1990 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    R.P. Cowburn, M.E. Welland, Science 287, 1466 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    J.A. De Toro, S.S. Lee, D. Salazar, J.L. Cheong, P.S. Normile, P. Muñiz, J.M. Riveiro, M. Hillenkamp, F. Tournus, A. Tamion, P. Nordblad, Appl. Phys. Lett. 102, 183104 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M.S. Andersson, J.A. De Toro, S.S. Lee, P.S. Normile, P. Nordblad, R. Mathieu, Phys. Rev. B 93, 054407 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M.S. Andersson, R. Mathieu, S.S. Lee, P.S. Normile, G. Singh, P. Nordblad, J.A. De Toro, Nanotechnology 26, 475703 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Mohapatra, A. Mitra, D. Bahadur, M. Aslam, J. Alloys Comp. 628, 416 (2015)CrossRefGoogle Scholar
  20. 20.
    V. Thiruvengadam, S. Vittaa, J. Appl. Phys. 119, 244312 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    D. Alba Venero, S.E. Rogers, S. Langridge, J. Alonso, M.L. Fdez-Gubieda, A. Svalov, L. Fernandez Barquin, J. Appl. Phys. 119, 143902 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Denardin, A.L. Brandl, M. Knobel, P. Panissod, A.B. Pakhomov, H. Liu, X.X. Zhang, Phys. Rev. B 65, 064422 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    W.C. Nunes, L.M. Socolovsky, J.C. Denardin, F. Cebollada, A.L. Brandl, M. Knobel, Phys. Rev. B 72, 212413 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Vargas, W.C. Nunes, L.M. Socolovsky, M. Knobel, D. Zanchet, Phys. Rev. B 72, 184428 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    A. Michels, C. Vecchini, O. Moze, K. Suzuki, P.K. Pranzas, J. Kohlbrecher, J. Weissmüller, Phys. Rev. B 74, 134407 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    V. Gadet et al., J. Am. Chem. Soc. 114, 9213 (1992)CrossRefGoogle Scholar
  27. 27.
    D.M. Pajerowski et al., Chem. Mat. 23, 3045 (2011)CrossRefGoogle Scholar
  28. 28.
    F.A. Frye et al., Polyhedron 26, 2281 (2007)CrossRefGoogle Scholar
  29. 29.
    O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science 272, 704 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    A. Bleuzen et al., J. Am. Chem. Soc. 122, 6648 (2000)CrossRefGoogle Scholar
  31. 31.
    D. Brinzei, L. Catala, N. Louvain, G. Rogez, O. Stéphan, A. Gloterc, T. Mallah, J. Mater. Chem. 16, 2593 (2006)CrossRefGoogle Scholar
  32. 32.
    L. Catala, F. Volatron, D. Brinzei, T. Mallah, Inorg. Chem. 48, 3360 (2009)CrossRefGoogle Scholar
  33. 33.
    Y. Prado, L. Lisnard, D. Heurtiaux, G. Rogez, A. Gloter, O. Stéphan, N. Dia, E. Rivière, L. Catala, T. Mallah, Chem. Commun. 47, 1051 (2011)CrossRefGoogle Scholar
  34. 34.
    Y. Prado, S. Mazérat, E. Rivière, G. Rogez, A. Gloter, L. Catala, T. Mallah, Adv. Func. Mater. 24, 5402 (2014)CrossRefGoogle Scholar
  35. 35.
    K. Ridier, B. Gillon, G. André, G. Chaboussant, L. Catala, S. Mazérat, T. Mallah, J. Appl. Phys. 118, 114304 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    M.V. Avdeev, J. Mol. Liquids 189, 68 (2014)CrossRefGoogle Scholar
  37. 37.
    M.V. Avdeev, V.L. Aksenov, Physics-Uspekhi 53, 971 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    M.V. Avdeev, J. Appl. Cryst. 40, 56 (2007)CrossRefGoogle Scholar
  39. 39.
    R. Cywinski, J.F. Booth, R.D. Rainford, J. Phys. F 7, 2567 (1977)ADSCrossRefGoogle Scholar
  40. 40.
    W. Wagner, A. Wiedenmann, W. Petry, A. Geibel, H. Gleiter, J. Mater. Res. 6, 2305 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    C. Bellouard, I. Mirebeau, M. Hennion, Phys. Rev. B 53, 5570 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    J. Weissmüller, A. Michels, J.G. Baker, A. Wiedenmann, U. Erb, R.D. Shull, Phys. Rev. B 63, 214414 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    J.F. Löffler, H.B. Braun, W. Wagner, G. Kostorz, A. Wiedenmann, Phys. Rev. B 71, 134410 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    M. Sachan et al., Appl. Phys. Lett. 92, 152503 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    D.F. Farrell, J. Magn. Magn. Mat. 303, 318 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    A. Michels, R.N. Viswanatah, J. Weissmüller, Europhys. Lett. 64, 43 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    K. Butter, A. Hoell, A. Wiedenmann, A.V. Petukhov, G.J. Vroege, J. Appl. Cryst. 37, 847 (2004)CrossRefGoogle Scholar
  48. 48.
    A. Wiedenmann et al., J. Phys.: Cond. Matter 18, 2713 (2006)ADSGoogle Scholar
  49. 49.
    S. Disch, E. Wetterskog, R.P. Hermann, A. Wiedenmann, U. Vainio, G. Salazar-Alvarez, L. Bergström, T.Brückel, New J. Phys. 14, 013025 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    C. Kittel, Rev. Mod. Phys. 21, 541 (1949)ADSCrossRefGoogle Scholar
  51. 51.
    J.W.F. Brown , J. Appl. Phys. 39, 993 (1968)ADSCrossRefGoogle Scholar
  52. 52.
    S.A. Majetich, M. Sachan, J. Phys. D 39, 407 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    J.F. Löffler, H.B. Braun, W. Wagner, J. Appl. Phys. 85, 5187 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    J.F. Löffler, H.B. Braun, W. Wagner, G. Kostorz, A. Wiedenmann, Mater. Sci. Eng. A 304, 1050 (2001)CrossRefGoogle Scholar
  55. 55.
    F. Bodker, S. Mørup, S. Linderoth, Phys. Rev. Lett. 72, 282 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    F. Bodker, S. Mørup, Europhys. Lett. 52, 217 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    F. Bodker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mørup, Phys. Rev. B, 61 6826 (2000)ADSCrossRefGoogle Scholar
  58. 58.
    E.M. Chudnovsky et al., Phys. Rev. B 33, 251 (1986)ADSCrossRefGoogle Scholar
  59. 59.
    S. Ferlay et al., Inorg. Chem. 38, 229 (1999)CrossRefGoogle Scholar
  60. 60.
    T. Mallah, C. Auberger, M. Verdaguer, P. Veillet, J. Chem. Soc. Chem. Commun. 61, (1995)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratoire Léon Brillouin, UMR12 CEA-CNRSGif-sur-YvetteFrance
  2. 2.Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud 11OrsayFrance

Personalised recommendations