Polariton dynamics of a disordered three-cavity system of four-level atoms

Regular Article

Abstract

The effect of disorder in the intensity of the driving laser on the dynamics of a disordered three-cavity system of four-level atoms is investigated. This system can be described by a Bose-Hubbard Hamiltonian for dark-state polaritons. We examine the evolution of the first- and second-order correlation functions, the photon and atomic excitation numbers and the basis state occupation probabilities. We use the full Hamiltonian and the approximate Bose-Hubbard Hamiltonian with uniform and speckle disorder, as well as with different dipole couplings. We find that the results for the two Hamiltonians are in good agreement. We also find that it is possible to obtain bunching and antibunching of the polaritons by varying the dipole couplings and that polaritons can be driven into a purely photonic state by varying the laser intensity.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    R. Fazio, H. van der Zant, Phys. Rep. 355, 235 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    M.P. Kennett, ISRN Condensed Matter Physics 2013, 393616 (2013)CrossRefGoogle Scholar
  6. 6.
    M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Nat. Phys. 2, 849 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Tomadin, R. Fazio, J. Opt. Soc. Am. B 27, A130 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    M.D. Lukin, Rev. Mod. Phys. 75, 457 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 84, 5094 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    M.D. Lukin, S.F. Yelin, M. Fleischhauer, Phys. Rev. Lett. 84, 4232 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409, 490 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Phys. Rev. Lett. 86, 783 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    U. Schnorrberger, J.D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, I. Bloch, Phys. Rev. Lett. 103, 033003 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Felicetti, G. Romero, D. Rossini, R. Fazio, E. Solano, Phys. Rev. A 89, 013853 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Z.R. Zhong, X. Lin, B. Zhang, Z.B. Yang, Int. J. Quant. Inf. 10, 1250070 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Aiyejina, R. Andrews, Eur. Phys. J. B 89, 89 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    D.D. Duncan, S.J. Kirkpatrick, J. Opt. 25, 231 (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.The Department of Physics, The University of the West IndiesSt. AugustineTrinidad and Tobago

Personalised recommendations