Skip to main content
Log in

Target recovery in complex networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The invulnerability of complex networks is an important issue which has been widely analyzed in different fields. A lot of works have been done to measure and improve the stability of complex networks when being attacked. Recently, how to recover networks after attack was intensively studied. The existing methods are mainly designed to recover the overall functionality of networks, yet in many real cases the recovery of important nodes should be given priority, to which we refer target recovery. For example, when the cold wave paralyses the railway networks, target recovery means to repair those stations or railways such that the transport capacity of densely-populated cities can be recovered as fast as possible. In this paper, we first compare the impact of attacks on the whole network and target nodes respectively, and then study the efficiency of traditional recovery methods that are proposed based on global centrality metrics. Furthermore, based on target centrality metrics, we introduce a local betweenness recovery method and we find it has better performance than the traditional methods. We finally propose a hybrid recovery method which includes local betweenness metric and local closeness metric. The performance of the hybrid method is shown to be similar to that of the greedy algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  2. W. Li, A. Bashan, S.V. Buldyrev, H.E. Stanley, S. Havlin, Phys. Rev. Lett. 108, 228702 (2012)

    Article  ADS  Google Scholar 

  3. W. Zhang, Y. Xia, B. Ouyang, L. Jiang, Physica A 435, 80 (2015)

    Article  ADS  Google Scholar 

  4. J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. E 85, 066134 (2012)

    Article  ADS  Google Scholar 

  5. S. Shao, X. Huang, H.E. Stanley, S. Havlin, Phys. Rev. E 89, 032812 (2014)

    Article  ADS  Google Scholar 

  6. S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)

    Article  ADS  Google Scholar 

  7. J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. Lett. 107, 195701 (2011)

    Article  ADS  Google Scholar 

  8. X. Yang, Y. Zhu, J. Hong, L. Yang, Y. Wu, Y. Tang, PloS one 11, e0161077 (2016)

    Article  Google Scholar 

  9. M.J.O. Pocock, D.M. Evans, J. Memmott, Science 335, 973 (2012)

    Article  ADS  Google Scholar 

  10. M. Novkovic, L. Onder, J. Cupovic et al. PLoS Biol. 14, e1002515 (2016)

    Article  Google Scholar 

  11. B. Min, S.D. Yi, K.-M. Lee, K.-I. Goh, Phys. Rev. E 89, 042811 (2014)

    Article  ADS  Google Scholar 

  12. R. Parshani, S.V. Buldyrev, S. Havlin, Proc. Natl. Acad. Sci. USA 108, 1007 (2011)

    Article  ADS  Google Scholar 

  13. A. Vespignani, Nat. Phys. 8, 32 (2012)

    Article  MathSciNet  Google Scholar 

  14. G. Chen, Z. Dong, D.J. Hill, G. Zhang, K. Hua, Physica A 389, 595 (2010)

    Article  ADS  Google Scholar 

  15. R. Albert, H. Jeong, A. Barabasi, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  16. R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001)

    Article  ADS  Google Scholar 

  17. R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  18. P. Crucitti, V. Latora, M. Marchiori, A. Rapisarda, Physica A 320, 622 (2003)

    Article  ADS  Google Scholar 

  19. C.M. Schneider, A.A. Moreira, J.S. Andrade, S. Havlin, H.J. Herrmann, Proc. Natl. Acad. Sci. USA 108, 3838 (2011)

    Article  ADS  Google Scholar 

  20. G.-G. Dong, J. Gao, R. Du, L. Tian, H.E. Stanley, S. Havlin, Phys. Rev. E 87, 052804 (2013)

    Article  ADS  Google Scholar 

  21. L. Zhao, Y. Guo, G. Xu, G. Xu, Z. Hu. Acta Physica Sinica 63, 158901 (2014)

    Google Scholar 

  22. R.S. Farr, J.L. Harer, T.M. Fink, Phys. Rev. Lett. 113, 105 (2014)

    Article  Google Scholar 

  23. A. Majdandzic, B. Podobnik, S.V. Buldyrev, D.Y. Kenett, S. Havlin, H.E. Stanley, Nat. Phys. 10, 34 (2014)

    Article  Google Scholar 

  24. L.D. Valdez, M.A.D. Muro, L.A. Braunstein, J. Stat. Mech.: Theory and Experiment 9, 093402 (2016)

    Article  Google Scholar 

  25. P.-Y. Chen, S.-M. Cheng, Phys. Rev. E 91, 022805 (2015)

    Article  ADS  Google Scholar 

  26. S. Xiao, G. Xiao, in International Workshop on the Design of Reliable Communication Networks (DRCN) (IEEE, Piscataway, New York, 2011), p. 78

  27. P.-Y. Chen, S.-M. Cheng, K.-C. Chen, IEEE Commun. Mag. 50, 24 (2012)

    Article  ADS  Google Scholar 

  28. P.-Y. Chen, K.-C. Chen, in Proc. IEEE Globecom (IEEE, Piscataway, New York, 2011), p. 1

  29. P.-Y. Chen, S.-M. Cheng, K.-C. Chen, IEEE Internet Things J. 1, 337 (2014)

    Article  Google Scholar 

  30. V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)

    Article  ADS  Google Scholar 

  31. V. Latora, M. Marchiori, Eur. Phys. J. B 32, 249 (2003)

    Article  ADS  Google Scholar 

  32. P. Crucitti, V. Latora, S. Porta, Phys. Rev. E 73, 036125 (2006)

    Article  ADS  Google Scholar 

  33. F. Hu, C.H. Yeung, S. Yang, W. Wang, A. Zeng, Sci. Rep. 6, 24522 (2016)

    Article  ADS  Google Scholar 

  34. G. Li, S.D.S. Reis, A.A. Moreira, S. Havlin, H.E. Stanley, J.S. Andrade Jr., Phys. Rev. Lett. 104, 018701 (2010)

    Article  ADS  Google Scholar 

  35. F. Morone, H. Makse, C. Collaboration, Nature 524, 65 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Zeng, A. Target recovery in complex networks. Eur. Phys. J. B 90, 10 (2017). https://doi.org/10.1140/epjb/e2016-70618-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70618-0

Keywords

Navigation