Target recovery in complex networks

  • Weiman Sun
  • An ZengEmail author
Regular Article


The invulnerability of complex networks is an important issue which has been widely analyzed in different fields. A lot of works have been done to measure and improve the stability of complex networks when being attacked. Recently, how to recover networks after attack was intensively studied. The existing methods are mainly designed to recover the overall functionality of networks, yet in many real cases the recovery of important nodes should be given priority, to which we refer target recovery. For example, when the cold wave paralyses the railway networks, target recovery means to repair those stations or railways such that the transport capacity of densely-populated cities can be recovered as fast as possible. In this paper, we first compare the impact of attacks on the whole network and target nodes respectively, and then study the efficiency of traditional recovery methods that are proposed based on global centrality metrics. Furthermore, based on target centrality metrics, we introduce a local betweenness recovery method and we find it has better performance than the traditional methods. We finally propose a hybrid recovery method which includes local betweenness metric and local closeness metric. The performance of the hybrid method is shown to be similar to that of the greedy algorithm.


Statistical and Nonlinear Physics 


  1. 1.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    W. Li, A. Bashan, S.V. Buldyrev, H.E. Stanley, S. Havlin, Phys. Rev. Lett. 108, 228702 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    W. Zhang, Y. Xia, B. Ouyang, L. Jiang, Physica A 435, 80 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. E 85, 066134 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S. Shao, X. Huang, H.E. Stanley, S. Havlin, Phys. Rev. E 89, 032812 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. Lett. 107, 195701 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    X. Yang, Y. Zhu, J. Hong, L. Yang, Y. Wu, Y. Tang, PloS one 11, e0161077 (2016)CrossRefGoogle Scholar
  9. 9.
    M.J.O. Pocock, D.M. Evans, J. Memmott, Science 335, 973 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Novkovic, L. Onder, J. Cupovic et al. PLoS Biol. 14, e1002515 (2016)CrossRefGoogle Scholar
  11. 11.
    B. Min, S.D. Yi, K.-M. Lee, K.-I. Goh, Phys. Rev. E 89, 042811 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    R. Parshani, S.V. Buldyrev, S. Havlin, Proc. Natl. Acad. Sci. USA 108, 1007 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Vespignani, Nat. Phys. 8, 32 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Chen, Z. Dong, D.J. Hill, G. Zhang, K. Hua, Physica A 389, 595 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    R. Albert, H. Jeong, A. Barabasi, Nature 406, 378 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    P. Crucitti, V. Latora, M. Marchiori, A. Rapisarda, Physica A 320, 622 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    C.M. Schneider, A.A. Moreira, J.S. Andrade, S. Havlin, H.J. Herrmann, Proc. Natl. Acad. Sci. USA 108, 3838 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    G.-G. Dong, J. Gao, R. Du, L. Tian, H.E. Stanley, S. Havlin, Phys. Rev. E 87, 052804 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    L. Zhao, Y. Guo, G. Xu, G. Xu, Z. Hu. Acta Physica Sinica 63, 158901 (2014)Google Scholar
  22. 22.
    R.S. Farr, J.L. Harer, T.M. Fink, Phys. Rev. Lett. 113, 105 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Majdandzic, B. Podobnik, S.V. Buldyrev, D.Y. Kenett, S. Havlin, H.E. Stanley, Nat. Phys. 10, 34 (2014)CrossRefGoogle Scholar
  24. 24.
    L.D. Valdez, M.A.D. Muro, L.A. Braunstein, J. Stat. Mech.: Theory and Experiment 9, 093402 (2016)CrossRefGoogle Scholar
  25. 25.
    P.-Y. Chen, S.-M. Cheng, Phys. Rev. E 91, 022805 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S. Xiao, G. Xiao, in International Workshop on the Design of Reliable Communication Networks (DRCN) (IEEE, Piscataway, New York, 2011), p. 78Google Scholar
  27. 27.
    P.-Y. Chen, S.-M. Cheng, K.-C. Chen, IEEE Commun. Mag. 50, 24 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    P.-Y. Chen, K.-C. Chen, in Proc. IEEE Globecom (IEEE, Piscataway, New York, 2011), p. 1Google Scholar
  29. 29.
    P.-Y. Chen, S.-M. Cheng, K.-C. Chen, IEEE Internet Things J. 1, 337 (2014)CrossRefGoogle Scholar
  30. 30.
    V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    V. Latora, M. Marchiori, Eur. Phys. J. B 32, 249 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    P. Crucitti, V. Latora, S. Porta, Phys. Rev. E 73, 036125 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    F. Hu, C.H. Yeung, S. Yang, W. Wang, A. Zeng, Sci. Rep. 6, 24522 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    G. Li, S.D.S. Reis, A.A. Moreira, S. Havlin, H.E. Stanley, J.S. Andrade Jr., Phys. Rev. Lett. 104, 018701 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    F. Morone, H. Makse, C. Collaboration, Nature 524, 65 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of physicsBeijing Normal UniversityBeijingP.R. China
  2. 2.School of Systems Science, Beijing Normal UniversityBeijingP.R. China

Personalised recommendations