Dissipative dynamics of a quantum two-state system in presence of nonequilibrium quantum noise

  • Niklas Mann
  • Jochen Brüggemann
  • Michael Thorwart
Regular Article

Abstract

We analyze the real-time dynamics of a quantum two-state system in the presence of nonequilibrium quantum fluctuations. The latter are generated by a coupling of the two-state system to a single electronic level of a quantum dot which carries a nonequilibrium tunneling current. We restrict to the sequential tunneling regime and calculate the dynamics of the two-state system, of the dot population, and of the nonequilibrium charge current on the basis of a diagrammatic perturbative method valid for a weak tunneling coupling. We find a nontrivial dependence of the relaxation and dephasing rates of the two-state system due to the nonequilibrium fluctuations which is directly linked to the structure of the unperturbed central system. In addition, a Heisenberg-Langevin-equation of motion allows us to calculate the correlation function of the nonequilibrium fluctuations. By this, we obtain a generalized nonequilibrium fluctuation relation which includes the equilibrium fluctuation-dissipation theorem in the limit of zero transport voltage. A straightforward extension to the case with a time-periodic ac voltage is shown.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    N.N. Bogolyubov, Elementary example of the establishing of a statistical equilibrium in a system coupled to a thermostat, in On some statistical methods in mathematical physics (Academy of Sciences UkrSSR, Kiew, 1945) (in Russian)Google Scholar
  2. 2.
    U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)Google Scholar
  3. 3.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 67, 725 (E) (1995)ADSCrossRefGoogle Scholar
  5. 5.
    H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II, Springer Series in Solid-State Sciences (Springer, Berlin, 1985), Vol. 31Google Scholar
  7. 7.
    M. Grifoni, P. Hänggi, Phys. Rep. 304, 229 (1998)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, H.-D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996)Google Scholar
  9. 9.
    H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Hänggi, H. Thomas, Phys. Rep. 88, 207 (1982)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Bercioux, R. Egger, P. Hänggi, M. Thorwart, New J. Phys. 17, 020201 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Mitra, A.J. Millis, Phys. Rev. B 72, 121102 (R) (2005)ADSCrossRefGoogle Scholar
  13. 13.
    D. Segal, D.R. Reichman, A.J. Millis, Phys. Rev. B 76, 195316 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S. Camalet, S. Kohler, P. Hänggi, Phys. Rev. B 70, 155326 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    L. Nicolin, D. Segal, J. Chem. Phys. 135, 164106 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    M. Esposito, M.A. Ochoa, M. Galperin, Phys. Rev. B 92, 235440 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J. König, H. Schoeller, G. Schön, Phys. Rev. Lett. 76, 1715 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    J. König, J. Schmid, H. Schoeller, G. Schön, Phys. Rev. B 54, 16820 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    A. Thielmann, M.H. Hettler, J. König, G. Schön, Phys. Rev. B 68, 115105 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    J.R. Chaudhuri, S.K. Banik, B. Deb, D.S. Ray, Eur. Phys. J. D 6, 415 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    F. Zhan, S. Denisov, P. Hänggi, Phys. Stat. Sol. B 250, 2355 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Niklas Mann
    • 1
  • Jochen Brüggemann
    • 1
  • Michael Thorwart
    • 1
  1. 1.Institut für Theoretische Physik, Universität HamburgHamburgGermany

Personalised recommendations