Advertisement

From solitons to discrete breathers

  • Manuel G. VelardeEmail author
  • Alexander P. Chetverikov
  • Werner Ebeling
  • Sergey V. Dmitriev
  • Victor D. Lakhno
Regular Article

Abstract

The excitation of solitons and discrete breathers (pinned or otherwise, also known as intrinsic localized modes, DB/ILM) in a one-dimensional lattice, also denoted as a chain, is considered when both on-site and inter-site vibrations, coupled together, are governed by the empirical Morse interaction. We focus attention on the transformation of the former into the latter as the relative strength of the on-site potential to that of the inter-site potential is increased.

Keywords

Solid State and Materials 

References

  1. 1.
    A.A. Ovchinnikov, Sov. Phys. J. Exp. Theor. Phys. 30, 147 (1970)ADSGoogle Scholar
  2. 2.
    A.A. Ovchinnikov, S. Flach, Phys. Rev. Lett. 83, 248 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    A.M. Kosevich, A.S. Kovalev, Sov. Phys. J. Exp. Theor. Phys. 40, 891 (1975)ADSGoogle Scholar
  4. 4.
    A.S. Dolgov, Sov. Phys. Solid State 28, 907 (1986)Google Scholar
  5. 5.
    A.J. Sievers, S. Takeno, Phys. Rev. Lett. 61, 970 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    J.B. Page, Phys. Rev. 41, 7835 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Kiselev, S.R. Bickham, A.J. Sievers, Phys. Rev. B 48, 13508 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    D.K. Campbell, S. Flach, Yu.S. Kivshar, Phys. Today 57, 43 (2004), and references thereinADSCrossRefGoogle Scholar
  9. 9.
    S. Flach, A.V. Gorbach, Phys. Rep. 295, 181 (2008), and references thereinADSCrossRefGoogle Scholar
  10. 10.
    S.V. Dmitriev, E.A. Korznikova, Yu.A. Baimova, M.G. Velarde, Phys. Usp. 59, 446 (2016), and references thereinADSCrossRefGoogle Scholar
  11. 11.
    T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006)Google Scholar
  12. 12.
    N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)ADSCrossRefGoogle Scholar
  13. 13.
    N.J. Zabusky, Comput. Phys. Commun. 5, 1 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    M. Toda, Theory of Nonlinear Lattices, 2nd edn. (Springer, Berlin, 1989)Google Scholar
  15. 15.
    V.I. Nekorkin, M.G. Velarde, Synergetic Phenomena in Active, Lattices. Patterns, Waves, Solitons, Chaos (Springer, Berlin, 2002)Google Scholar
  16. 16.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  17. 17.
    A. Ranciaro Neto, M.O. Sales, F.A.B.F. de Moura, Solid State Commun. 229, 22 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S. Aubry, Physica D 103, 201 (1997)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Aubry, Physica D 216, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Iooss, G. James, Chaos 515, 015113 (2005), and references thereinADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Hennig, C. Mulhern, L. Schimansky-Gaier, G.P. Tsironis, P. Hänggi, Phys. Rep. 586, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    L. Cisneros-Ake, L. Cruzeiro, M.G. Velarde, Physica D 306, 82 (2015), and references thereinADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62, 2755 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    A.P. Chetverikov, W. Ebeling, V.D. Lakhno, A.S. Shigaev, M.G. Velarde, Eur. Phys. J. B 89, 101 (2016), and references thereinADSCrossRefGoogle Scholar
  25. 25.
    J. Dancz, S.A. Rice, J. Chem. Phys. 67, 1418 (1977)ADSCrossRefGoogle Scholar
  26. 26.
    T.J. Rolfe, S.A. Rice, J. Dancz, J. Chem. Phys. 70, 26 (1979)ADSCrossRefGoogle Scholar
  27. 27.
    A.P. Chetverikov, W. Ebeling, M.G. Velarde, Int. J. Bifurc. Chaos 16, 1613 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Manuel G. Velarde
    • 1
    Email author
  • Alexander P. Chetverikov
    • 2
  • Werner Ebeling
    • 3
  • Sergey V. Dmitriev
    • 4
    • 5
  • Victor D. Lakhno
    • 6
  1. 1.Instituto PluridisciplinarMadridSpain
  2. 2.Department of PhysicsSaratov State UniversitySaratovRussia
  3. 3.Institute of Physics, Humboldt UniversityBerlinGermany
  4. 4.Institute for Metals Superplasticity Problems, Russian Academy of SciencesUfaRussia
  5. 5.Research Laboratory for Mechanics of New Nanomaterials, Peter the Great St. Petersburg Polytechnical UniversitySt. PetersburgRussia
  6. 6.Institute of Mathematical Problems of Biology, Russian Academy of SciencesPushchinoRussia

Personalised recommendations